期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
基于Q-learning算法的机场航班延误预测
1
作者 刘琪 乐美龙 《航空计算技术》 2025年第1期28-32,共5页
将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延... 将改进的深度信念网络(DBN)和Q-learning算法结合建立组合预测模型。首先将延误预测问题建模为一个标准的马尔可夫决策过程,使用改进的深度信念网络来选择关键特征。经深度信念网络分析,从46个特征变量中选择出27个关键特征类别作为延误时间的最终解释变量输入Q-learning算法中,从而实现对航班延误的实时预测。使用北京首都国际机场航班数据进行测试实验,实验结果表明,所提出的模型可以有效预测航班延误,平均误差为4.05 min。将提出的组合算法性能与4种基准方法进行比较,基于DBN的Q-learning算法的延误预测准确性高于另外四种算法,具有较高的预测精度。 展开更多
关键词 航空运输 航班延误预测 深度信念网络 Q-learning 航班延误
在线阅读 下载PDF
Optimizing Deep Learning Parameters Using Genetic Algorithm for Object Recognition and Robot Grasping 被引量:2
2
作者 Delowar Hossain Genci Capi Mitsuru Jindai 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期11-15,共5页
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We... The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks. 展开更多
关键词 deep learning(DL) deep belief neural network(DBNN) genetic algorithm(GA) object recognition robot grasping
在线阅读 下载PDF
一种基于机器学习的井间水驱优势通道识别方法
3
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
基于多域信息融合的深度学习轴承故障诊断方法
4
作者 葛卓 夏华猛 +2 位作者 王凯亮 徐增丙 丁改革 《振动与冲击》 EI CSCD 北大核心 2024年第23期47-55,共9页
针对单一振动信号包含故障信息易被隐藏以及单一深度学习模型诊断能力不强导致轴承故障诊断精度低的问题,提出了一种基于多域信息融合的深度学习故障诊断方法。利用变分模态分解方法(variational mode decomposition,VMD)将原始振动信... 针对单一振动信号包含故障信息易被隐藏以及单一深度学习模型诊断能力不强导致轴承故障诊断精度低的问题,提出了一种基于多域信息融合的深度学习故障诊断方法。利用变分模态分解方法(variational mode decomposition,VMD)将原始振动信号分解为多个本征模态函数(intrinsic mode function,IMF)分量,同时对每个IMF分量进行快速傅里叶变换(fast Fourier transformation,FFT)转化为频域样本;然后将多个IMF分量和其对应频域样本分别输入至多个深度度量学习(deep metric learning,DML)模型和深度置信网络(deep belief network,DBN)模型分别进行初步诊断分析,并利用简单软投票法对这些初步诊断结果进行融合从而获取最终诊断结果。最后通过对不同轴承故障的诊断试验分析,结果表明,该研究提出的方法不仅具有较好的诊断效果,而且诊断性能分别优于基于时域和基于频域的信息融合诊断方法。 展开更多
关键词 信息融合 深度度量学习(DML) 深度置信网络(DBN) 软投票法
在线阅读 下载PDF
基于IMODA自适应深度信念网络的复杂模拟电路故障诊断方法
5
作者 巩彬 安爱民 +1 位作者 石耀科 杜先君 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期327-344,共18页
针对传统DBN在无监督训练过程中预训练耗时久、诊断精度差等问题,提出了一种基于改进多目标蜻蜓优化自适应深度信念网络(IMODA-ADBN)的模拟电路故障诊断方法。首先,根据参数更新方向的异同提出了自适应学习率,提高网络收敛速度;其次,传... 针对传统DBN在无监督训练过程中预训练耗时久、诊断精度差等问题,提出了一种基于改进多目标蜻蜓优化自适应深度信念网络(IMODA-ADBN)的模拟电路故障诊断方法。首先,根据参数更新方向的异同提出了自适应学习率,提高网络收敛速度;其次,传统DBN在有监督调优过程利用BP算法,然而BP算法存在易陷入局部最优的问题,为了改善该问题,利用改进的MODA算法取代BP算法提高网络分类精度。在IMODA算法中,添加Logistic混沌印射和基于对立跳跃以获得帕累托最优解,增加算法的多样性,提高算法的性能。在7个多目标数学基准问题上测试该算法,并与3种元启发式优化算法(MODA、MOPSO和NSGA-II)进行比较,证明了IMODA-ADBN网络模型具有稳定性。最后将IMODAADBN运用到二级四运放双二阶低通滤波器的诊断实验中,实验结果表明该方法在收敛速度快的基础上保证了分类精度,诊断率更高,能够实现高难故障的分类与定位。 展开更多
关键词 模拟电路 MODA算法 自适应学习率 深度信念网络 故障诊断
在线阅读 下载PDF
基于深度学习的拖拉机指纹识别系统研究 被引量:2
6
作者 肖黎 吴蓓 《农机化研究》 北大核心 2024年第10期259-263,共5页
将基于深度学习的指纹识别系统应用在拖拉机中,硬件包括STM32微处理器、指纹采集系统和DSP处理模块,软件采用卷积深度置信网络实现了指纹识别的车辆进入和发动机启动。测试结果表明:系统对假指纹认假率非常低,可靠性高,大幅度提高了使... 将基于深度学习的指纹识别系统应用在拖拉机中,硬件包括STM32微处理器、指纹采集系统和DSP处理模块,软件采用卷积深度置信网络实现了指纹识别的车辆进入和发动机启动。测试结果表明:系统对假指纹认假率非常低,可靠性高,大幅度提高了使用便携性,提升了用户体验感受。 展开更多
关键词 拖拉机 指纹识别 深度学习 STM32 DSP 卷积深度 置信网络
在线阅读 下载PDF
基于深度学习的人脸局部遮挡表情动态识别算法 被引量:1
7
作者 陈曦 蔡现龙 《吉林大学学报(信息科学版)》 CAS 2024年第3期503-508,共6页
针对因人脸局部遮挡,导致表情动态特征较难提取和识别问题,提出一种基于深度学习的人脸局部遮挡表情动态识别算法。建立深度信念网络模型,将前一层输出值作为后一层输入值,设计特征堆叠单元,计算可见层中神经元的状态变量分布情况,根据... 针对因人脸局部遮挡,导致表情动态特征较难提取和识别问题,提出一种基于深度学习的人脸局部遮挡表情动态识别算法。建立深度信念网络模型,将前一层输出值作为后一层输入值,设计特征堆叠单元,计算可见层中神经元的状态变量分布情况,根据面部五官间动态关联性,将可见层的状态值作为隐藏层的输入值求得隐藏神经元状态变量。将识别过程分为训练和正向传播2个步骤,输出特征变化规律,在正向传播过程中查找符合规律变化的像素点,求解该像素点权重,同时作为损失函数标准,比对面部多个位置的识别权重,约束识别率,完成人脸局部遮挡表情动态识别。实验数据证明,该方法能降低图像失真和细节丢失,提高图像分辨率,识别率高,针对不同局部遮挡情况均能完成高效识别。 展开更多
关键词 深度学习 表情动态识别 动态关联性 深度信念网络模型 隐藏层
在线阅读 下载PDF
基于深度信念极限学习机与卷积优化算法的洪水预报方法 被引量:1
8
作者 徐军杨 张奇伟 +3 位作者 蔡鹏 罗远林 张坚 张楚 《水电能源科学》 北大核心 2024年第8期48-52,共5页
针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作... 针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作为输入数据,并将该模型与BP、ELM、DBN-BP、DBN-ELM、COA-DBN-ELM模型进行对比。结果表明,所建立的ICOA-DBN-ELM模型有更好的预报精度,在洪水预报领域具有良好的应用前景。 展开更多
关键词 洪水预报 深度信念极限学习机 参数优化 卷积优化算法
在线阅读 下载PDF
基于DBNs的车辆悬架减振器异响鉴别方法 被引量:11
9
作者 黄海波 李人宪 +2 位作者 杨琪 丁渭平 杨明亮 《西南交通大学学报》 EI CSCD 北大核心 2015年第5期776-782,共7页
针对人工经验提取特征进行减振器异响鉴别的复杂性与不可扩展性的问题,分析了深度信念网络(deep belief networks,DBNs)在减振器异响鉴别中的应用,并结合减振器整车与台架试验提出了完整的减振器异响鉴别流程.该方法只需将收集到的减振... 针对人工经验提取特征进行减振器异响鉴别的复杂性与不可扩展性的问题,分析了深度信念网络(deep belief networks,DBNs)在减振器异响鉴别中的应用,并结合减振器整车与台架试验提出了完整的减振器异响鉴别流程.该方法只需将收集到的减振器活塞杆顶端振动加速度信号作为输入,经过DBNs模型逐层特征学习便可进行减振器异响鉴别.同时将鉴别结果与经典的BP神经网络、支持向量机以及传统的3种人工特征提取方法进行对比分析.结果表明:在输入仅为原始信号的条件下,深度信念网络模型对减振器异响鉴别的准确率为96.7%,表明了深度信念网络在减振器异响甄别中的优越性,具有广泛的工程应用前景. 展开更多
关键词 减振器 异响鉴别 深度学习 玻尔兹曼机 深度信念网络
在线阅读 下载PDF
基于深度置信网络和双谱对角切片的低截获概率雷达信号识别 被引量:27
10
作者 王星 周一鹏 +2 位作者 周东青 陈忠辉 田元荣 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2972-2976,共5页
基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监... 基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 d B时,基于BDS和DBN的识别方法对调频连续波(FMCW),Frank,Costas,FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。 展开更多
关键词 低截获概率雷达 深度学习 深度置信网络 双谱对角切片 受限玻尔兹曼机
在线阅读 下载PDF
基于混合型深信度网络的风速日前预测研究 被引量:9
11
作者 万杰 陈宁 +3 位作者 钱敏慧 郭钰锋 胡清华 于达仁 《节能技术》 CAS 2016年第1期81-86,共6页
目前,准确的风速预测是解决大规模风电安全高效并网的关键基础问题之一。本文将深度学习理论引入风速预报的回归问题研究,基于堆栈降噪自动编码器建立了多个具有不同隐含层数的混合型深信度网络回归模型,并利用风电场的实测风速数据进... 目前,准确的风速预测是解决大规模风电安全高效并网的关键基础问题之一。本文将深度学习理论引入风速预报的回归问题研究,基于堆栈降噪自动编码器建立了多个具有不同隐含层数的混合型深信度网络回归模型,并利用风电场的实测风速数据进行四组不同季节风速日前预测实验,包括相同隐含层模型在不同训练测试上的对比实验和不同隐含层模型在同一测试集上的对比实验。实验结果表明:相同隐含层模型在4个测试集上的回归误差(MSE和MAE)随着预报步长的变化都相对比较平稳、波动性不大,即深信度网络模型的鲁棒性较好对数据集的敏感性不强;预报误差随着隐含层数变化具有一定规律,即深信度网络模型对于同一测试集上存在一个最优的隐含层数能够使预报误差最小。最后,针对相同的训练测试集,采用典型常用的支持向量回归机进行风速日前日前对比实验,预报误差统计效果均比混合型深信度网络的差。因此,深信度网络可以通过其强大的非线性映射能力自动提取风速的复杂变化模式,从而有效提高回归模型的预测精度和鲁棒性。这为深度特征学习方法在风速预测中的实际应用奠定了一定的基础。 展开更多
关键词 风速 日前预测 深度学习 自动编码器 混合型 深信度网络
在线阅读 下载PDF
用于水声目标特征学习与识别的混合正则化深度置信网络 被引量:10
12
作者 杨宏晖 申昇 +1 位作者 姚晓辉 韩振 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第2期220-225,共6页
针对获取水声目标有类标样本困难且代价高昂的水声目标小样本识别问题,提出了基于混合正则化深度置信网络(hybrid regularization deep belief network,HR-DBN)的水声目标深度特征学习及识别方法。该方法首先提出了混合2种正则化策略的... 针对获取水声目标有类标样本困难且代价高昂的水声目标小样本识别问题,提出了基于混合正则化深度置信网络(hybrid regularization deep belief network,HR-DBN)的水声目标深度特征学习及识别方法。该方法首先提出了混合2种正则化策略的深度置信网络进行水声目标深度特征学习。第一种正则化策略是利用最大互信息组正则化项修正目标函数,提高隐含层的稀疏度;第二种正则化策略是利用大量无类标样本获得有关水声目标的普遍特性的描述和先验知识,引导特征学习。最后利用少量有类标样本对网络进行全局优化,构建识别系统,提高水声目标识别正确率。利用2类实测舰船辐射噪声数据进行验证实验,实验结果表明,提出的方法可以提取描述水声目标的深度特征,提高水声目标识别正确率。 展开更多
关键词 水声目标识别 深度学习 无监督学习 深度置信网络 互信息 正则化
在线阅读 下载PDF
基于深度学习的图像分类研究综述 被引量:45
13
作者 苏赋 吕沁 罗仁泽 《电信科学》 2019年第11期58-74,共17页
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突... 近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。 展开更多
关键词 深度学习 图像分类 自编码器 深度信念网络 卷积神经网络
在线阅读 下载PDF
基于小波深度置信网络的风电爬坡预测方法 被引量:14
14
作者 唐振浩 孟庆煜 +3 位作者 曹生现 李扬 牟中华 庞晓娅 《太阳能学报》 EI CAS CSCD 北大核心 2019年第11期3213-3220,共8页
为了提高风电爬坡事件预测的准确性,提出一种基于深度学习的具有特征自适应选择的小波深度置信网络(WDBNAFS)算法。首先,分析风电功率混沌特性。然后,对时间序列数据进行小波分解,设计特征自适应选择算法选取建模数据作为预测模型的输... 为了提高风电爬坡事件预测的准确性,提出一种基于深度学习的具有特征自适应选择的小波深度置信网络(WDBNAFS)算法。首先,分析风电功率混沌特性。然后,对时间序列数据进行小波分解,设计特征自适应选择算法选取建模数据作为预测模型的输入变量。最后,采用深度置信网络构建风电爬坡事件预测模型,设计基于实际生产数据的实验验证所提出算法的有效性。仿真结果表明,所提出算法预测准确率可达90%以上。 展开更多
关键词 深度学习 特征选择 预测模型 风电爬坡事件 深度置信网络
在线阅读 下载PDF
全参数动态学习深度信念网络在滚动轴承寿命预测中的应用 被引量:33
15
作者 杨宇 张娜 程军圣 《振动与冲击》 EI CSCD 北大核心 2019年第10期199-205,249,共8页
相对于传统的"对信号进行特征提取+人工选择对数据敏感的特征值+预测模型"的滚动轴承寿命预测方法,深度信念网络(DBN)有显著的优势:DBN可以直接处理原始数据,让机器自动学习信号特征,从而免去了特征提取和选择的过程,提高了... 相对于传统的"对信号进行特征提取+人工选择对数据敏感的特征值+预测模型"的滚动轴承寿命预测方法,深度信念网络(DBN)有显著的优势:DBN可以直接处理原始数据,让机器自动学习信号特征,从而免去了特征提取和选择的过程,提高了预测的智能性。但是传统的DBN采用固定学习率进行网络学习,不利于寻找最优结果;基于此,提出了一种改进的深度信念网络——全参数动态学习深度信念网络(GPDLDBN),并将其应用于滚动轴承寿命预测中。GPDLDBN预测模型由多层受限玻尔兹曼机(RBM)单元组成,采用自下而上的逐层无监督贪婪算法训练参数;接着采用自上而下的监督学习算法微调整个网络参数,两个过程均采用新的全参数动态学习策略设置各参数;采用GPDLDBN预测模型对实测的滚动轴承寿命数据进行了预测,并与传统的固定学习率的DBN预测模型进行了对比分析。结果表明,GPDLDBN预测模型能够有效加快收敛速度,减少模型的训练时间,且具有更高的预测精度。 展开更多
关键词 深度学习 全参数动态学习深度信念网络(GPDLDBN) 滚动轴承 寿命预测
在线阅读 下载PDF
引入深度学习的城市基准地价评估模型研究 被引量:9
16
作者 王华 罗平 张杰 《中国土地科学》 CSSCI CSCD 北大核心 2018年第9期59-65,共7页
研究目的:为全面表征影响因素与土地价格之间的复杂函数关系,提高城镇基准地价预测精度,研究一种更精准的地价评估方法。研究方法:提出一种基于深度学习思想的城市基准地价评估方法,通过实例法验证模型的可行性和有效性。研究结果:(1)... 研究目的:为全面表征影响因素与土地价格之间的复杂函数关系,提高城镇基准地价预测精度,研究一种更精准的地价评估方法。研究方法:提出一种基于深度学习思想的城市基准地价评估方法,通过实例法验证模型的可行性和有效性。研究结果:(1)与BP神经网络、支持向量机这类浅层学习模型相比,DBN的深层网络结构明显能够更好地挖掘城市地价样本集的深层特征,获得更好的评估精度;(2)DBN的无监督训练框架能够利用少量的训练样本获得较高的评估精度,并且随着无标签样本的增加模型评估精度也逐渐提高。研究结论:DBN模型能够精准拟合地价影响因素和土地价格之间的复杂关系,对于基准地价评估工作具有重要的实际应用意义。 展开更多
关键词 土地经济 城市基准地价 地价评估 深度学习 深度置信网络 武汉市
在线阅读 下载PDF
基于深度信念网络的烟叶部位近红外光谱分类方法研究 被引量:10
17
作者 王静 丁香乾 +3 位作者 王晓东 韩凤 韩冬 曲晓娜 《红外与激光工程》 EI CSCD 北大核心 2019年第4期31-37,共7页
近红外检测作为一种快速无损的检测方法得到广泛关注。但光谱中存在大量噪声以及光谱数据的高维度和非线性等特点影响了分类模型的准确率。将深信网络(DBN)的理论改进并引入光谱特征学习中,解决高维特征间非线性关系的学习问题,采用逐... 近红外检测作为一种快速无损的检测方法得到广泛关注。但光谱中存在大量噪声以及光谱数据的高维度和非线性等特点影响了分类模型的准确率。将深信网络(DBN)的理论改进并引入光谱特征学习中,解决高维特征间非线性关系的学习问题,采用逐层训练策略和随机梯度上升法分别进行网络预训练和微调获得网络权值;并结合支持向量机(SVM)建立近红外光谱多分类模型DBNSVM。与基于主成分分析的分类模型PCA-SVM和基于线性判别分析的LDA-SVM分类模型进行应用比较。结果表明:DBN-SVM算法能有效地学习高维数据中的内在结构和非线性关系,由该算法构建的模型具有良好的特征学习能力和分类识别能力,而且在稳健性、各类别的灵敏度和特效度也更优。 展开更多
关键词 深度信念网络 近红外光谱 特征学习 分类模型
在线阅读 下载PDF
基于深度学习的遥感影像城市扩展方法研究 被引量:15
18
作者 韩洁 李盛阳 张涛 《载人航天》 CSCD 2017年第3期414-418,426,共6页
在已有的遥感影像变化检测方法基础之上,引入并提出利用深度学习中的深度信念网络对高分辨率遥感影像进行分类及城市扩展变化检测分析。通过与传统方法的对比,深度学习的总体精度和Kappa系数最高。深度学习的生产者精度最高,误判率比较... 在已有的遥感影像变化检测方法基础之上,引入并提出利用深度学习中的深度信念网络对高分辨率遥感影像进行分类及城市扩展变化检测分析。通过与传统方法的对比,深度学习的总体精度和Kappa系数最高。深度学习的生产者精度最高,误判率比较低,最适用于城市建成区变化趋势的研究。通过计算图像的信息熵对隐含层节点数进行预测,大大缩短了深度学习的时间,相同实验条件下每幅影像训练时间可缩短12.525 s,提高了分类效率,对于城市扩展应用研究具有较大的贡献。最后应用改进的深度信念网络对北京市三期遥感影像进行分类及变化检测,并分析了北京市的城市扩展趋势及特征。为城市规划、土地利用保护提供技术参考及借鉴。 展开更多
关键词 深度学习 深度信念网络 遥感影像 变化检测 信息熵
在线阅读 下载PDF
一种耦合深度信念网络的图像识别方法 被引量:11
19
作者 马苗 许西丹 武杰 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第5期102-107,共6页
针对网络层数增加带来的梯度消失问题,提出了一种耦合深度信念网络的图像识别方法.该方法将"跨层"连接引入到深度信念网络中并应用于图像识别.给出了耦合深度信念网络的结构示意图及其参数更新方法,并在相同数据集和网络层数... 针对网络层数增加带来的梯度消失问题,提出了一种耦合深度信念网络的图像识别方法.该方法将"跨层"连接引入到深度信念网络中并应用于图像识别.给出了耦合深度信念网络的结构示意图及其参数更新方法,并在相同数据集和网络层数情况下比较了具有最佳参数的深度信念网络与最佳参数的耦合深度信念网络的识别性能,分析了"跨层"连接中主、次线耦合比例对网络性能的影响,且与几种经典的深度学习方法进行了对比.实验结果显示,耦合深度信念网络在收敛速度与识别精度上均优于深度信念网络.同时,相比于经典的深度网络,文中所提方法获得了良好的识别性能.这说明采用"跨层"耦合方式可有效缓解深度信念网络训练过程中出现的梯度消失问题,提高网络的识别性能. 展开更多
关键词 跨层连接 深度信念网络 深度学习 图像识别
在线阅读 下载PDF
基于深度学习的模拟电路故障诊断方法 被引量:13
20
作者 汪晓璐 李畅 张朝龙 《电子器件》 CAS 北大核心 2019年第3期674-678,共5页
针对模拟电路的故障诊断问题,提出了一种基于深度学习的故障诊断方法。首先测量模拟电路各个故障类别的脉冲响应数据,随后应用深度学习中深度信念网络方法进行特征提取,最后将提取的特征用于建立基于极端学习机的故障诊断模型,从而对模... 针对模拟电路的故障诊断问题,提出了一种基于深度学习的故障诊断方法。首先测量模拟电路各个故障类别的脉冲响应数据,随后应用深度学习中深度信念网络方法进行特征提取,最后将提取的特征用于建立基于极端学习机的故障诊断模型,从而对模拟电路的各个故障类别进行区分。通过四运放双二阶高通滤波器电路的故障诊断实验对提出的故障诊断方法进行了验证。通过对比实验表明,提出的基于深度信念网络的故障特征提取方法明显优于传统的基于小波分析的故障特征提取方法,有助于提高模拟电路故障诊断正确率。 展开更多
关键词 模拟电路 故障诊断 深度学习 深度信念网络 特征提取
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部