期刊文献+
共找到9,496篇文章
< 1 2 250 >
每页显示 20 50 100
改进Deep Q Networks的交通信号均衡调度算法
1
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network 被引量:2
2
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
3
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network INVERSION landfill
在线阅读 下载PDF
基于CNN-Informer和DeepLIFT的电力系统频率稳定评估方法
4
作者 张异浩 韩松 荣娜 《电力自动化设备》 北大核心 2025年第7期165-171,共7页
为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数... 为解决扰动发生后电力系统频率稳定评估精度低且预测时间长的问题,提出了一种电力系统频率稳定评估方法。该方法改进层次时间戳机制,有效捕捉了频率响应在不同时间尺度下的相关性;利用深度学习重要特征技术对输入特征进行筛选,简化了数据维度并提升了模型的训练效率和预测性能;结合卷积神经网络与Informer网络,基于编码器与解码器的协同训练,构建适用于多场景的频率稳定评估框架。以修改后的新英格兰10机39节点系统和WECC 29机179节点系统为算例,仿真结果表明,所提方法在时效性和准确性方面具有显著的优势,并在多种实验条件下展现出良好的鲁棒性和适应性。 展开更多
关键词 电力系统 频率稳定评估 深度学习 时序数据 层次时间戳 蒸馏机制 卷积神经网络
在线阅读 下载PDF
基于PI-DeepONet模型的IGBT模块结温估算方法
5
作者 项江鑫 霍思佳 +2 位作者 乐应波 杨程 崔昊杨 《半导体技术》 北大核心 2025年第7期746-755,共10页
时变高功率工况下,IGBT模块结温的实时准确估算是高效实施热管理策略的基础。但现有方法中,有限元分析(FEA)法难以实时响应,热网络模型法估算准确率低,两者均无法满足结温估算实时性和准确率的均衡性需求。针对这些问题,提出了一种基于... 时变高功率工况下,IGBT模块结温的实时准确估算是高效实施热管理策略的基础。但现有方法中,有限元分析(FEA)法难以实时响应,热网络模型法估算准确率低,两者均无法满足结温估算实时性和准确率的均衡性需求。针对这些问题,提出了一种基于物理约束深度算子网络(PI-DeepONet)模型的IGBT模块结温实时准确估算方法。首先,在算子网络的损失函数中引入物理约束,设计了具有物理约束的PI-DeepONet模型;随后,将FEA计算的IGBT模块热特性参数与时空位置信息作为输入对模型进行训练;最后,利用训练所得的最优算子估算模块结温。仿真结果表明,该模型兼顾了结温估算的准确率和实时性,能够适应复杂工况,为IGBT模块热管理策略的高效实施提供了可靠的理论支持与技术保障。 展开更多
关键词 IGBT 结温估算 物理约束深度算子网络(PI-deepONet)模型 有限元分析(FEA)法 热网络模型 热管理策略
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化语义分割网络
6
作者 惠飞 王悦华 +3 位作者 穆柯楠 徐源 张宇 龙姝静 《计算机工程与设计》 北大核心 2025年第7期1990-1997,共8页
为在硬件资源受限的嵌入式平台中实现高效语义分割,提出一种改进Deep Lab V3+的轻量化语义分割网络。采用Mobile NetV2主干网络并引入深度可分离卷积减少参数,编码器引入SE模块,增强多尺度特征融合,解码器引入CBAM模块,突出特征提取信息... 为在硬件资源受限的嵌入式平台中实现高效语义分割,提出一种改进Deep Lab V3+的轻量化语义分割网络。采用Mobile NetV2主干网络并引入深度可分离卷积减少参数,编码器引入SE模块,增强多尺度特征融合,解码器引入CBAM模块,突出特征提取信息;设计并行与主干网络低级特征的分支,提高目标边缘分割精度;优化损失函数改善正负样本不平衡问题。实验结果表明,改进网络在PASCALVOC数据集上m IoU和m PA分别提高1.54%和2.44%,参数量减少47.84M,改进效果明显。 展开更多
关键词 深度学习 语义分割 轻量化网络 注意力机制 深度可分离卷积 特征提取 损失函数
在线阅读 下载PDF
基于Deep Q Networks的机械臂推动和抓握协同控制 被引量:3
7
作者 贺道坤 《现代制造工程》 CSCD 北大核心 2021年第7期23-28,共6页
针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映... 针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映射至推动或抓握动作,经过马尔可夫过程,采取目光长远奖励机制,选取最佳行为函数,实现对复杂场景机械臂推动和抓握动作的自主协同控制。在仿真和真实场景实验中,该方法在复杂场景中能够通过推动和抓握自主协同操控实现对物块的快速抓取,并获得更高的动作效率和抓取成功率。 展开更多
关键词 机械臂 抓握 推动 深度Q网络(deep Q networks) 协同控制
在线阅读 下载PDF
基于M-DeepLab网络的速度建模技术研究
8
作者 徐秀刚 张浩楠 +1 位作者 许文德 郭鹏 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期145-155,共11页
本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融... 本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融合,既获得了更多的速度特征,又保留了网络浅部的速度信息,防止出现网络退化和过拟合问题。模型测试证明,M-DeepLab网络能够实现智能、精确的速度建模,简单模型、复杂模型以及含有噪声数据复杂模型的智能速度建模,均取得了良好的效果。相较DeepLabV3+网络,本文方法对于速度模型界面处的预测,特别是速度突变区域的预测,具有更高的预测精度,从而验证了该方法精确性、高效性、实用性和抗噪性。 展开更多
关键词 深度学习 速度建模 M-deepLab网络 监督学习
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
9
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:4
10
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 Graph neural network Hyperspectral image classification deep hybrid network
在线阅读 下载PDF
Voice activity detection based on deep belief networks using likelihood ratio 被引量:3
11
作者 KIM Sang-Kyun PARK Young-Jin LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期145-149,共5页
A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spect... A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm. 展开更多
关键词 voice activity detection likelihood ratio deep belief networks
在线阅读 下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
12
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(DBN)
在线阅读 下载PDF
Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 被引量:4
13
作者 CHEN Ying WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1354-1363,共10页
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ... Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases. 展开更多
关键词 direction-of-arrival(DOA)estimation underdetermined condition deep residual network(DRN) time delay covariance matrix
在线阅读 下载PDF
Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis 被引量:1
14
作者 KULEVOME Delanyo Kwame Bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期233-246,共14页
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of... Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition. 展开更多
关键词 bearing failure deep neural network fault classification health indicator prognostics and health management
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
15
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
16
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
DeephitTM:医学生存分析的时间相关性深度学习模型 被引量:1
17
作者 张大鹏 程学亮 孙明霞 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第3期138-148,共11页
生存分析是医学中经常用到的一种健康预测方法,越来越多的学者开始采用深度学习的方法对生存分析问题进行建模以得到更好的预测结果.目前已有的方法都假设风险和时间的联合概率是无关联的.然而生存分析数据的实际结果中却包含时间因素,... 生存分析是医学中经常用到的一种健康预测方法,越来越多的学者开始采用深度学习的方法对生存分析问题进行建模以得到更好的预测结果.目前已有的方法都假设风险和时间的联合概率是无关联的.然而生存分析数据的实际结果中却包含时间因素,这就无法保证不同时刻得到的风险概率是无关联的.本文提出一种带有时间相关性的深度学习模型DeephitTM,该模型对已有的深度学习模型Deephit进行了改进.实验结果表明,在不同的数据集上,改进后的模型的性能相比于原模型能够提升1到3个百分点. 展开更多
关键词 生存分析 深度学习 时间相关性 神经网络 deephit模型
在线阅读 下载PDF
Deep-Dark-Net:一种基于生成对抗网络的导星相机暗流预测模型
18
作者 曲伯桓 杨贺珺 +14 位作者 何宇轩 郭远昊 刘宇 曹子皇 齐朝祥 于涌 王培培 赵永恒 张勇 王淑青 栗剑 吕冠儒 曹兴华 向铭 邱虹云 《天文学进展》 CSCD 北大核心 2024年第4期683-697,共15页
暗流会影响图像质量、降低星像的信噪比,进而影响星像位置和流量测量的精度,因此需要在天文数据处理中准确估计并去除暗流。LAMOST导星图像处理的需求为:在无暗场图像情况下高精度处理历史导星图像数据,简化导星相机暗场图像拍摄的步骤... 暗流会影响图像质量、降低星像的信噪比,进而影响星像位置和流量测量的精度,因此需要在天文数据处理中准确估计并去除暗流。LAMOST导星图像处理的需求为:在无暗场图像情况下高精度处理历史导星图像数据,简化导星相机暗场图像拍摄的步骤,可以利用导星图像的特性反演和生成高精度可靠的暗场图像。利用LAMOST导星原始数据的特性,提出一种基于生成对抗网络模型来精确估计暗流的新方法——Deep-Dark-Net。该方法利用条件生成对抗网络,构建导星图像Overscan区域、Optical Black区域与对应的有效成像区域噪声之间的关联模型,从而通过这些区域反演和重构高精度暗场图像。实验表明:Deep-Dark-Net预测的暗流与真实暗流的符合度高于传统方法,满足了LAMOST望远镜导星图像处理对暗场图像的需求。该工作不仅为天文图像暗流的处理提供了一种新思路、新方法,也为深度学习技术在天文图像处理中的潜在价值和应用方向提供了重要的视角和示例。 展开更多
关键词 暗流 深度学习 条件生成对抗网络 deep-Dark-Net LAMOST
在线阅读 下载PDF
3D laser scanning strategy based on cascaded deep neural network
19
作者 Xiao-bin Xu Ming-hui Zhao +4 位作者 Jian Yang Yi-yang Xiong Feng-lin Pang Zhi-ying Tan Min-zhou Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1727-1739,共13页
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito... A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target. 展开更多
关键词 Scanning strategy Cascaded deep neural network Improved cross entropy loss function Pitching range and speed model Integral separate speed PID
在线阅读 下载PDF
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
20
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 deep learning Military application Targets stealth network Mask generation Generative adversarial network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部