期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于复合深度Gauss回归网络的汽车ORS优化设计
1
作者 王文捷 孙奕 +1 位作者 刘钊 朱平 《汽车安全与节能学报》 北大核心 2025年第3期367-375,共9页
为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假... 为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假人伤害预测值构建优化目标函数,基于多组群乌鸦搜索算法开展ORS参数优化;使用工程仿真数据,验证方法的有效性。结果表明:相较于原始方案,本设计方案的假人伤害最高降低了30.77%,平均降低12.11%;用本方法可以预测假人多个部位的伤害值,并获取高质量的ORS设计方案。 展开更多
关键词 汽车碰撞 乘员约束系统(ORS) 假人伤害 数据驱动 复合深度Gauss回归网络 多组群乌鸦搜索算法
在线阅读 下载PDF
基于高斯过程回归和深度强化学习的水下扑翼推进性能寻优方法
2
作者 杨映荷 魏汉迪 +1 位作者 范迪夏 李昂 《上海交通大学学报》 北大核心 2025年第1期70-78,共9页
为了克服水下工作环境的复杂多变性,以及扑翼运动本身存在控制难度高、变量多、非线性特征显著等问题,提出一种直接探索环境并选取相应最优扑翼推进运动参数的寻优方法.采用拉丁超采样技术获取多维扑翼参数在实际水池中的数据样本,并基... 为了克服水下工作环境的复杂多变性,以及扑翼运动本身存在控制难度高、变量多、非线性特征显著等问题,提出一种直接探索环境并选取相应最优扑翼推进运动参数的寻优方法.采用拉丁超采样技术获取多维扑翼参数在实际水池中的数据样本,并基于该数据使用高斯过程回归(GPR)算法建立泛化工作环境的非参数模型.在不同推进性能需求下,采用深度强化学习(DRL)中的TD3算法并以奖励最大化为目标,训练得出连续区间内多参数动作最优组合解.实验结果表明,该GPR-TD3方法可以习得实验环境下扑翼推进的全定义域内最优解,包括最大速度和最大效率,并且该最优解可以在GPR中以二维形式直观验证其准确性.同时,针对任意给出的推进速度要求值,在290组真实样本前提下,新算法能够给出误差范围为0.23%~6.68%的推荐动作组合解,为真实应用提供参考. 展开更多
关键词 水下扑翼 高斯过程回归 深度强化学习 推进性能寻优
在线阅读 下载PDF
基于深度学习和高斯过程回归的玉米冠下视觉导航路径提取方法 被引量:7
3
作者 张伟荣 陈学庚 +3 位作者 齐江涛 周俊博 李宁 王硕 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期15-26,共12页
面对田间作业过程中大型机器机动性差及复杂场景下导航路径拟合精度差的问题,提出一种基于深度学习和高斯过程回归的玉米冠层下导航路径提取方法。首先,基于四足机器人采集玉米冠下作物行图像,对Mask R-CNN实例分割方法进行改进,在特征... 面对田间作业过程中大型机器机动性差及复杂场景下导航路径拟合精度差的问题,提出一种基于深度学习和高斯过程回归的玉米冠层下导航路径提取方法。首先,基于四足机器人采集玉米冠下作物行图像,对Mask R-CNN实例分割方法进行改进,在特征融合网络引入简化路径增强特征金字塔网络(Simple path aggregation network,Simple-PAN),通过增加自底向上的路径增强模块和特征融合操作模块,提高图像上下文特征的融合能力。其次,以模型识别的冠下作物行目标为基础构建两侧区域分界线,计算可通行区域两侧下垂叶片的分布情况,优化基于加权平均的导航路径算法。对高斯过程回归(Gaussian process regression,GPR)算法进行改进,添加DotProduct线性核对曲线拟合进行优化,优化GPR方法的直线拟合效果。最后,在验证集上进行导航路径识别,计算不同方法拟合导航路径的平均偏差。试验结果表明,该算法能够适应玉米田中叶片遮挡根茎的情况,优化的Mask R-CNN模型具备更高的冠下目标分割精度,基于改进GPR算法拟合的导航线平均偏差为0.7像素,处理一帧分辨率为1280像素×720像素的图像平均耗时为227 ms,该算法能提供在玉米冠层下具备一定避障能力的导航路径,满足导航实时性和准确性的要求。结果可为田间智能农业装备的导航算法研究提供技术与理论支撑。 展开更多
关键词 玉米冠下作物行 深度学习 视觉导航 路径识别 避障 高斯过程回归
在线阅读 下载PDF
南水北调东线江苏段典型泵站运行效率模拟模型 被引量:2
4
作者 杨靖仁 王超 +1 位作者 雷晓辉 何中政 《南水北调与水利科技(中英文)》 CAS CSCD 北大核心 2024年第2期388-398,共11页
泵站机组运行受多种因素影响,导致泵站运行理论效率与实际效率误差较大。针对泵站机组运行效率精准模拟难题,运用基于高价多项式回归、回归树、多元线性回归、向量机回归、高斯过程回归、神经网络的10个回归算法,建立泵站机组效率模拟... 泵站机组运行受多种因素影响,导致泵站运行理论效率与实际效率误差较大。针对泵站机组运行效率精准模拟难题,运用基于高价多项式回归、回归树、多元线性回归、向量机回归、高斯过程回归、神经网络的10个回归算法,建立泵站机组效率模拟模型并开展对比分析,优选出有效的泵站运行效率模拟建模方法。讨论分析采用“上下游水位+流量”代替传统“扬程+流量”开展泵站运行模拟的效果。以南水北调东线邳州站和遂宁二站共8台机组的历史数据开展实例分析,相关实验结果表明:在所有方法中,高斯过程回归(Gaussian process regression,GPR)模型在均方根误差(ERMS)、平均绝对误差(EMA)、均方误差(EMS)、决定系数(R2)和最大个体误差(EMI)指标上综合表现最佳,R2逼近0.95;使用站上、站下水位代替传统的扬程对模型进行训练,所有模型的综合评价指标整体有所改善。综合来看,使用GPR模型并使用上游、下游水位代替扬程进行模拟效率表现最好,以邳州站4号机为例,可将模拟效率的EMA和EMI分别从16.49%和20.40%减少至0.41%和2.30%,研究成果具有一定实际意义,可为我国调水工程泵站经济运行提供有力支撑。 展开更多
关键词 机器学习 深度学习 高斯过程回归 泵站效率模拟 南水北调东线
在线阅读 下载PDF
基于深度强化学习的含智能软开关配电网电压控制方法 被引量:11
5
作者 朱振山 张新炳 陈豪 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1214-1224,I0023,共12页
大量分布式新能源接入给配电网运行带来了电压越限和网损增加等一系列问题。提出了一种基于多智能体强化学习的无模型电压控制策略,通过协调光伏逆变器、分布式储能和智能软开关以降低网损、消除电压越限。针对传统电压控制策略对配电... 大量分布式新能源接入给配电网运行带来了电压越限和网损增加等一系列问题。提出了一种基于多智能体强化学习的无模型电压控制策略,通过协调光伏逆变器、分布式储能和智能软开关以降低网损、消除电压越限。针对传统电压控制策略对配电网精确的模型参数依赖性强的问题,提出了基于高斯过程回归的潮流替代模型,通过多智能体与潮流替代模型交互实现无模型的离线训练和在线应用。同时提出了一种基于随机加权三重Q学习的多智能体深度强化学习算法,能够进一步降低柔性演员-评论家算法的高低估误差,提升算法探索能力和收敛结果。最后在IEEE33节点系统上的仿真结果,验证了所提方法在解决配电网分布式电压优化控制问题上的有效性。 展开更多
关键词 深度强化学习 电压控制 智能软开关 多智能体 配电网 高斯过程回归
在线阅读 下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:53
6
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
在线阅读 下载PDF
基于深度高斯过程的飞行冲突探测方法研究 被引量:3
7
作者 陈正茂 刘洪 林毅 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第2期261-266,共6页
为了更加准确地建立航班飞行轨迹的时序特征,该文引入了高斯过程预测航班飞行轨迹。考虑机动环境运动目标的非线性特征,将高斯过程与深度置信网络相结合形成深度高斯过程,将其用于预测航班飞行轨迹。同时基于预测的航班飞行轨迹,实现了... 为了更加准确地建立航班飞行轨迹的时序特征,该文引入了高斯过程预测航班飞行轨迹。考虑机动环境运动目标的非线性特征,将高斯过程与深度置信网络相结合形成深度高斯过程,将其用于预测航班飞行轨迹。同时基于预测的航班飞行轨迹,实现了概率型基于深度高斯过程的飞行冲突探测算法。在引入蒙特卡罗思想和马尔科夫链蒙特卡罗采样算法基础上,提出了求解冲突探测算法的方法。基于深度高斯过程的航班飞行轨迹预测方法不仅可以预测航班飞行的标称轨迹,还可以预测各时刻位置可信区间的概率分布,这些特征为概率型飞行冲突探测打下了良好的数据基础。通过真实历史数据的仿真实验说明,该算法较基线算法具有更高的精度和稳定性,将其应用到飞行冲突探测中可获得更低的虚警率和更多的预警时间提前量。 展开更多
关键词 冲突探测 可信区间 深度置信网络 高斯过程 标称轨迹 轨迹预测
在线阅读 下载PDF
基于深度高斯过程回归的视频异常事件检测方法 被引量:6
8
作者 王栋 张晓俊 戴丽华 《电子测量与仪器学报》 CSCD 北大核心 2021年第3期158-164,共7页
针对现有异常检测方法忽视异常事件发生概率小而造成虚警这个问题,基于高斯过程回归(GPR)的框架,将GPR核函数非参数化所具有的灵活性与深度神经网络的结构特性相结合,并将卷积神经网络封装在GPR的核函数中,以同时实现异常检测任务中特... 针对现有异常检测方法忽视异常事件发生概率小而造成虚警这个问题,基于高斯过程回归(GPR)的框架,将GPR核函数非参数化所具有的灵活性与深度神经网络的结构特性相结合,并将卷积神经网络封装在GPR的核函数中,以同时实现异常检测任务中特征提取和检测两个步骤。在测试阶段,相对于训练样本集的后验概率的对数似然较小的被判定为异常。方法在一个模拟数据集和一个完全真实的数据集上进行了实验验证,实验结果证明所提出的方法在两个数据集上分别达到了83.9%的帧级AUC和34.4%的帧级AUC,在性能上达到了现有技术发展水平。 展开更多
关键词 视频监控 异常事件 高斯过程回归 深度核学习 卷积神经网络
在线阅读 下载PDF
基于深度分解的非平稳非高斯过程多步预测 被引量:2
9
作者 李春祥 金梦雅 《振动.测试与诊断》 EI CSCD 北大核心 2020年第4期711-718,823,824,共10页
首先,综合运用小波包分解(wavelet packet decomposition,简称WPD)、样本熵、单位根检验法和变分模态分解(variational mode decomposition,简称VMD),提出利用混合深度分解(hybrid deep decomposition,简称HDD)对非平稳非高斯过程进行处... 首先,综合运用小波包分解(wavelet packet decomposition,简称WPD)、样本熵、单位根检验法和变分模态分解(variational mode decomposition,简称VMD),提出利用混合深度分解(hybrid deep decomposition,简称HDD)对非平稳非高斯过程进行处理,降低实测风速风压复杂性,提升其可预测性;其次,根据Mercer定理构造了Morlet+Hermite(MH)线性组合核函数,使其具有局部多分辨性和全局泛化性的优点,采用粒子群算法(particle swarm optimization,简称PSO)对MH核进行参数优化,结合最小二乘支持向量机(least square support vector machine,简称LSSVM)建立HDD-MH-LSSVM多步预测模型;然后,将该模型与常用核函数构成的HDD-Poly-LSSVM,HDD-径向基函数(radial basis function,简称RBF)-LSSVM多步预测模型以及极限学习机(extreme learning machine,简称ELM)多步预测模型形成对比;最后,采用下击暴流风速和台风天大跨膜结构表面实测风压进行大步数多步预测验证。结果表明,HDD-MH-LSSVM预测算法预测精度高、稳定性好、通用性强。 展开更多
关键词 非平稳非高斯过程 极端风 混合深度分解 小波混合核 最小二乘支持向量机 多步预测
在线阅读 下载PDF
面向多元未知环境的基于深度高斯过程组合导航轨迹预测方法 被引量:1
10
作者 杨璐宁 刘正华 温暖 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3632-3639,共8页
传统惯导/卫导组合导航在多元复杂环境下易受干扰,从而导致观测量异常影响导航性能。以无人驾驶车辆为研究对象,展开提升组合导航系统导航精度的研究。采用深度高斯过程(deep Gaussian process,DGP)辅助估计位置的方法减小组合导航误差... 传统惯导/卫导组合导航在多元复杂环境下易受干扰,从而导致观测量异常影响导航性能。以无人驾驶车辆为研究对象,展开提升组合导航系统导航精度的研究。采用深度高斯过程(deep Gaussian process,DGP)辅助估计位置的方法减小组合导航误差,提高定位性能。基于DGP的辅助导航方法不仅可以预测无人驾驶车辆的标称轨迹,同时可以预测各时刻位置可信区间的概率分布,为基于深度学习模型的数据融合预测方法提供了严格的理论解释性。真实历史数据下的多重对比实验表明,该算法较传统深度神经网络算法具有更高的精度和可靠性。基于DGP的辅助导航方式能有效提高全球卫星定位系统信号失锁时的导航模型性能,实验表明相对于纯惯性导航系统(integral navigation system,INS)解算和长短期记忆(long and short term memory,LSTM)进行导航信号补偿定位精度分别提高了97.32%和52.13%。 展开更多
关键词 无人驾驶车辆 深度高斯过程 导航定位 信息融合
在线阅读 下载PDF
基于深度表示学习和高斯过程迁移学习的情感分析方法 被引量:13
11
作者 吴冬茵 桂林 +1 位作者 陈钊 徐睿峰 《中文信息学报》 CSCD 北大核心 2017年第1期169-176,共8页
情感分析是自然语言处理领域的重要研究问题。现有方法往往难以克服样本偏置与领域依赖问题,严重制约了情感分析的发展和应用。为此,该文提出了一种基于深度表示学习和高斯过程知识迁移学习的情感分析方法。该方法首先利用深度神经网络... 情感分析是自然语言处理领域的重要研究问题。现有方法往往难以克服样本偏置与领域依赖问题,严重制约了情感分析的发展和应用。为此,该文提出了一种基于深度表示学习和高斯过程知识迁移学习的情感分析方法。该方法首先利用深度神经网络获得文本样本的分布式表示,而后基于深度高斯过程,从辅助数据中迁移与测试集数据分布相符的高质量样例扩充训练数据集用于分类器训练,以此提高文本情感分类系统性能。在COAE2014文本情感分类数据集上进行的实验结果显示,该文提出的方法可以有效提高文本情感分类性能,同时可以有效缓解训练数据的样本偏置以及领域依赖问题的影响。 展开更多
关键词 情感分析 深度表示学习 高斯过程 迁移学习
在线阅读 下载PDF
基于GPR和深度强化学习的分层人机协作控制 被引量:9
12
作者 金哲豪 刘安东 俞立 《自动化学报》 EI CAS CSCD 北大核心 2022年第9期2352-2360,共9页
提出了一种基于高斯过程回归与深度强化学习的分层人机协作控制方法,并以人机协作控制球杆系统为例检验该方法的高效性.主要贡献是:1)在模型未知的情况下,采用深度强化学习算法设计了一种有效的非线性次优控制策略,并将其作为顶层期望... 提出了一种基于高斯过程回归与深度强化学习的分层人机协作控制方法,并以人机协作控制球杆系统为例检验该方法的高效性.主要贡献是:1)在模型未知的情况下,采用深度强化学习算法设计了一种有效的非线性次优控制策略,并将其作为顶层期望控制策略以引导分层人机协作控制过程,解决了传统控制方法无法直接应用于模型未知人机协作场景的问题;2)针对分层人机协作过程中人未知和随机控制策略带来的不利影响,采用高斯过程回归拟合人体控制策略以建立机器人对人控制行为的认知模型,在减弱该不利影响的同时提升机器人在协作过程中的主动性,从而进一步提升协作效率;3)利用所得认知模型和期望控制策略设计机器人末端速度的控制律,并通过实验对比验证了所提方法的有效性. 展开更多
关键词 深度强化学习 高斯过程回归 人体控制策略感知 分层人机协作
在线阅读 下载PDF
新能源电力系统中的分布式光伏净负荷预测 被引量:27
13
作者 廖启术 胡维昊 +2 位作者 曹迪 黄琦 陈哲 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第12期1520-1531,共12页
为响应碳达峰、碳中和的需求,构建一套完整的"源-网-荷-储"的新能源电力系统,提出了一种基于Hamiltonian Monte Carlo推断深度高斯过程(HMCDGP)算法的分布式光伏净负荷预测模型.首先,分别使用直接预测和间接预测两种形式对预... 为响应碳达峰、碳中和的需求,构建一套完整的"源-网-荷-储"的新能源电力系统,提出了一种基于Hamiltonian Monte Carlo推断深度高斯过程(HMCDGP)算法的分布式光伏净负荷预测模型.首先,分别使用直接预测和间接预测两种形式对预测模型的精度进行实验并得到点预测结果;其次,使用所提出的模型进行概率预测实验并得到区间预测结果;最后,通过以澳洲电网记录的300户净负荷数据为基础的对比实验验证所提模型的优越性.在得到准确的净负荷概率预测后,可以通过电力调度充分利用光伏产出,减少化石能源使用,从而减少碳排放. 展开更多
关键词 净负荷概率预测 光伏产出 深度高斯过程 点预测 区间预测
在线阅读 下载PDF
基于深度强化学习的水空跨域机器人水面起飞运动控制 被引量:4
14
作者 霍雨佳 李一平 封锡盛 《电机与控制学报》 EI CSCD 北大核心 2021年第12期139-150,共12页
水空跨域机器人由水到空的跨域过程(水面起飞)由于受到近水面环境下螺旋桨动力衰减、机器人浮力变化和水面介质引起流体力变化的影响,对其水面运动控制提出新的挑战。针对倾转螺旋桨推进的跨域机器人的水面起飞问题,提出了机器人近水面... 水空跨域机器人由水到空的跨域过程(水面起飞)由于受到近水面环境下螺旋桨动力衰减、机器人浮力变化和水面介质引起流体力变化的影响,对其水面运动控制提出新的挑战。针对倾转螺旋桨推进的跨域机器人的水面起飞问题,提出了机器人近水面环境下的浮力估算模型,螺旋桨推力模型,基于深度强化学习方法的机器人水面起飞控制,在此基础上,为解决机器人螺旋桨在近水面动力衰减而影响水面起飞难题,提出一种基于深度强化学习方法的跨域机器人分阶段水面起飞方法。通过仿真验证了基于深度强化学习的分阶段水面起飞的有效性,并在实际实验中证明了深度强化学习控制的无螺旋桨衰减下直接水面起飞和有螺旋桨衰减下分步水面起飞的有效性,分别实现水面起飞至2 m,横滚角和俯仰角小于5°(无螺旋桨衰减)和横滚角小于5°、以65°俯仰角的水面起飞(螺旋桨衰减)。 展开更多
关键词 水空跨域机器人 倾转四旋翼机器人 水空跨介质 深度强化学习 高斯过程 运动控制
在线阅读 下载PDF
一种改进的小批量手写体字符识别算法 被引量:2
15
作者 李远沐 王展青 《小型微型计算机系统》 CSCD 北大核心 2020年第7期1541-1546,共6页
在机器学习领域,从少量样本中高效的学习仍然是一个巨大的挑战.本文借鉴度量学习的思想,基于深度高斯过程模型这一非参数模型,提出了用于小批量手写字符识别的深度高斯匹配网络.该框架可以自适应的学习到一种将以标注支撑集和未标注的... 在机器学习领域,从少量样本中高效的学习仍然是一个巨大的挑战.本文借鉴度量学习的思想,基于深度高斯过程模型这一非参数模型,提出了用于小批量手写字符识别的深度高斯匹配网络.该框架可以自适应的学习到一种将以标注支撑集和未标注的样本映射能够有效到其标签的深度结构,同时避免因训练数据不足而出现的过拟合现象.在深度高斯过程模型的训练阶段,运用标准化流方法构造灵活的变分分布,改善了推断的质量.并且在稀疏化高斯模型以降低计算量时,使用最优k均值方法寻找伪点.在Omniglot和Mini Image数据集上的实验结果表明,相比于传统的CNN,本文算法在单学习样本中的准确率均有所提高,并且本文模型不依赖于微调,同时计算量也得到了控制. 展开更多
关键词 深度高斯过程 变分推断 标准化流 小样本学习 手写体识别
在线阅读 下载PDF
基于深度高斯过程的多元类别数据分布估计
16
作者 刘姝君 李艳婷 《计算机工程》 CAS CSCD 北大核心 2019年第2期160-166,共7页
多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小... 多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小样本多元类别数据分布估计的多元类别深度隐高斯过程模型,并结合蒙特卡洛采样的变分推断方法对模型进行参数优化。实验结果表明,与CLGP模型相比,该模型分布估计精确度有所提升。 展开更多
关键词 多元类别数据 生成式模型 深度高斯过程 无监督学习 变分推断
在线阅读 下载PDF
基于深度高斯过程回归的术中失血量和血红蛋白损失量估计
17
作者 钟坤华 陈芋文 +4 位作者 秦小林 张力戈 李雨捷 胡小艳 易斌 《计算机应用》 CSCD 北大核心 2023年第S02期306-311,共6页
动态、准确地估计失血量对围手术期管理非常重要,但测量术中失血量是一项困难的任务,特别是当血液被医用纱布吸收时。针对上述情况,以浸血医用纱布图像为研究对象,提出一种基于密集连接卷积网络(DenseNet)的深度多任务高斯过程回归(DMG... 动态、准确地估计失血量对围手术期管理非常重要,但测量术中失血量是一项困难的任务,特别是当血液被医用纱布吸收时。针对上述情况,以浸血医用纱布图像为研究对象,提出一种基于密集连接卷积网络(DenseNet)的深度多任务高斯过程回归(DMGPR)方法,以估计术中失血量和血红蛋白(Hb)损失量。DMGPR方法包括两部分:用于自动特征提取的密集连接卷积网络(DenseNet)和用于失血量及Hb损失量估计的多任务高斯回归过程(MGPR)。在手术室正常光照条件下,采集了569张浸血纱布图像,并对这些图像进行在线扩充,构建实验数据集。以决定系数(R2)、均方误差(MSE)和平均绝对误差(MAE)为性能指标,对DMGPR方法进行评估和对比。在失血量估计方面,DMGPR方法的R2、MSE和MAE分别为0.971、0.080和0.151;而在Hb损失量估计方面,DMGPR方法的相应结果分别为0.950、0.217和0.292。实验结果表明,DMGPR可以动态、准确地估计术中失血量和Hb损失量,并且比其他对比方法具有更好的性能,更适合于主要使用医用纱布和小到中度失血的手术。 展开更多
关键词 术中失血量 密集连接卷积网络 深度高斯过程回归 特征提取 血红蛋白
在线阅读 下载PDF
深度高斯过程辅助的光阴极注入器优化设计
18
作者 孙正 辛天牧 《强激光与粒子束》 CAS CSCD 北大核心 2023年第12期74-81,共8页
环形正负电子对撞机(CEPC)对注入器出口处的束团的电荷量、横向发射度、纵向长度等指标提出了严格的要求,设计开发高性能的电子枪及注入器成为了重要挑战。为了得到满足指标的束流,必须同时考虑众多非线性且相互耦合的变量。基于光阴极... 环形正负电子对撞机(CEPC)对注入器出口处的束团的电荷量、横向发射度、纵向长度等指标提出了严格的要求,设计开发高性能的电子枪及注入器成为了重要挑战。为了得到满足指标的束流,必须同时考虑众多非线性且相互耦合的变量。基于光阴极微波电子枪,提出了一种用多目标遗传算法在高维参数空间进行搜索的方法,对束团的横向归一化发射度和纵向长度进行优化,以期将电子枪的性能发挥至极限。由于考虑空间电荷效应后的束团传输过程模拟计算非常耗时,我们构建了一个3层的深度高斯过程作为替代模型,以解决目标值计算开销大的问题。通过对影响束流横、纵向相空间演化的关键因素分析,共确定了16个几何参数和10个束流元件参数。最后,展示了对由一个L-band的常温微波电子枪、一对螺线管和一个行波加速管组成的注入器,在初始电荷量为10 nC的优化结果。在计算了8000个有效解后,观察到在两个优化目标上均表现良好的解,其对应的横向归一化发射度为19.8π·mm·mrad,束团长度(RMS)为1.0 mm,与当前的设计结果比较,横向归一化发射度压低了约70%。 展开更多
关键词 微波电子枪 深度高斯过程 多目标优化 替代模型 高维参数优化
在线阅读 下载PDF
山区深水库区桥梁地震易损性及其参数影响分析
19
作者 吴凤波 王娜 +3 位作者 刘海明 凌浩 耿波 冯玉涛 《振动与冲击》 2025年第19期298-305,共8页
中国西南地区分布着大量入水深度较大的桥梁,这些深水桥梁易受地震作用影响,其地震易损性分析具有重要意义。既有研究在探讨结构参数相关性及地震方向性对深水桥梁易损性的影响方面存在不足。为此,综合运用高斯过程回归和Nataf变换方法... 中国西南地区分布着大量入水深度较大的桥梁,这些深水桥梁易受地震作用影响,其地震易损性分析具有重要意义。既有研究在探讨结构参数相关性及地震方向性对深水桥梁易损性的影响方面存在不足。为此,综合运用高斯过程回归和Nataf变换方法,提出了一种快速分析深水桥梁地震易损性的方法,该方法充分考虑了桥梁参数的不确定性及其相互关联性。基于该方法,探讨了地震方向性、桥梁入水深度及结构参数相关性对深水桥梁地震易损性的影响,并以某库区深水刚构桥地震易损性分析为例对所提方法进行了说明。结果表明:不考虑结构参数相关性会增加桥梁的破坏概率,深水环境会增加桥梁结构的损伤概率,且地震作用方向对构件易损性影响明显;此外,深水环境会使地震方向影响桥梁易损性的规律发生变化。 展开更多
关键词 深水桥梁 地震易损性 动水压力 高斯过程回归(GPR) Nataf变换
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部