期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于DSSD模型的机械加工件表面缺陷检测研究 被引量:9
1
作者 李兰 奚舒舒 +1 位作者 张才宝 马鸿洋 《机电工程》 CAS 北大核心 2021年第2期234-238,255,共6页
针对机械加工件表面缺陷检测问题,对工件表面缺陷种类、缺陷位置进行了研究,对深度学习中的目标检测算法进行了归纳分析,提出了一种基于DSSD模型的机械加工件表面缺陷检测方法。该方法首先利用扫描电子显微镜获取了不同工件、不同位置... 针对机械加工件表面缺陷检测问题,对工件表面缺陷种类、缺陷位置进行了研究,对深度学习中的目标检测算法进行了归纳分析,提出了一种基于DSSD模型的机械加工件表面缺陷检测方法。该方法首先利用扫描电子显微镜获取了不同工件、不同位置的表面缺陷图像,建立了工件表面缺陷数据集,并对数据集进行了扩充;然后将DSSD网络模型反卷积模块的网络层数进行了简化,从而降低了计算复杂度;最后利用简化后的DSSD模型完成了对数据集的训练和测试。研究结果表明:DSSD模型的检测效率高于YOLO、Faster R-CNN和SSD这3种模型,能够更准确、快速地检测工件表面缺陷,为实际工业场景下的缺陷检测提供了新的思路。 展开更多
关键词 工件缺陷 dssd模型 目标检测 卷积神经网络
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:6
2
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 更快速区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
在线阅读 下载PDF
一种改进的单步多框目标检测算法 被引量:5
3
作者 王燕妮 刘祥 刘江 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第4期145-153,共9页
针对单步多框目标检测算法(SSD)中存在的误检、漏检以及检测精度不够高等问题,提出了一种改进的SSD目标检测算法。该算法通过空洞卷积替换conv4_3卷积层及之前的两次标准卷积,扩大感受野,使用反卷积对不同尺度的特征图进行融合,使融合... 针对单步多框目标检测算法(SSD)中存在的误检、漏检以及检测精度不够高等问题,提出了一种改进的SSD目标检测算法。该算法通过空洞卷积替换conv4_3卷积层及之前的两次标准卷积,扩大感受野,使用反卷积对不同尺度的特征图进行融合,使融合形成的特征图具有丰富的上下文信息,最后为特征图添加注意力模型,有效提取感兴趣区域的特征。仿真实验结果表明,改进算法在VOC2007数据集上较原算法检测精度提升0.9%,检测结果更加准确,一定程度上改善了误检、漏检等问题,同时仍满足实时性的要求。 展开更多
关键词 目标检测 单步多框目标检测算法 空洞卷积 反卷积 注意力机制
在线阅读 下载PDF
用于内河船舶目标检测的单次多框检测器算法 被引量:24
4
作者 王言鹏 杨飏 姚远 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1258-1262,共5页
针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,... 针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,避免了由于波浪、树叶晃动等外界因素产生的误检。同时,对于内河船舶样本不足的问题,应用样本增强和迁徙学习的方法训练船舶目标检测的网络模型,有效缓解了训练过程中的过拟合现象,取得了较好的检测效果。经内河不同地区的多组船舶视频检测表明:此方法具有更好的鲁棒性和更低的误检率,船舶的识别率均超过了90%,比传统的背景建模算法提高16%以上。 展开更多
关键词 目标检测 背景建模 内河 卷积神经网络 单次多框检测器 样本增强
在线阅读 下载PDF
多尺度语义信息融合的目标检测 被引量:14
5
作者 陈鸿坤 罗会兰 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2087-2095,共9页
针对当前目标检测算法对小目标及密集目标检测效果差的问题,该文在融合多种特征和增强浅层特征表征能力的基础上提出了浅层特征增强网络(SEFN),首先将特征提取网络VGG16中Conv4_3层和Conv5_3层提取的特征进行融合形成基础融合特征;然后... 针对当前目标检测算法对小目标及密集目标检测效果差的问题,该文在融合多种特征和增强浅层特征表征能力的基础上提出了浅层特征增强网络(SEFN),首先将特征提取网络VGG16中Conv4_3层和Conv5_3层提取的特征进行融合形成基础融合特征;然后将基础融合特征输入到小型的多尺度语义信息融合模块中,得到具有丰富上下文信息和空间细节信息的语义特征,同时把语义特征和基础融合特征经过特征重利用模块获得浅层增强特征;最后基于浅层增强特征进行一系列卷积获取多个不同尺度的特征,并输入各检测分支进行检测,利用非极大值抑制算法实现最终的检测结果。在PASCAL VOC2007和MS COCO2014数据集上进行测试,模型的平均精度均值分别为81.2%和33.7%,相对于经典的单极多盒检测器(SSD)算法,分别提高了2.7%和4.9%;此外,该文方法在检测小目标和密集目标场景上,检测精度和召回率都有显著提升。实验结果表明该文算法采用特征金字塔结构增强了浅层特征的语义信息,并利用特征重利用模块有效保留了浅层的细节信息用于检测,增强了模型对小目标和密集目标的检测效果。 展开更多
关键词 目标检测 特征金字塔 特征融合 通道注意力 单极多盒检测器模型
在线阅读 下载PDF
基于SSD的轻量级车辆检测网络改进 被引量:11
6
作者 徐浩 杨德刚 +1 位作者 蒋倩倩 何林晋 《计算机工程与应用》 CSCD 北大核心 2022年第12期209-217,共9页
针对嵌入式摄像设备在执行目标检测任务过程中,对于移动中车辆的检测耗时较长无法及时反馈检测结果的问题,提出了一种基于残差连接和注意力机制的轻量级卷积网络来对SSD(single shot multibox detector)目标检测模型进行改进。采用h-sw... 针对嵌入式摄像设备在执行目标检测任务过程中,对于移动中车辆的检测耗时较长无法及时反馈检测结果的问题,提出了一种基于残差连接和注意力机制的轻量级卷积网络来对SSD(single shot multibox detector)目标检测模型进行改进。采用h-swish和h-sigmoid激活函数分别替换残差块中的ReLU激活函数和通道注意力模块中的sigmoid激活函数,降低训练和推理所需计算量。根据实际应用中特定角度下车辆外形的特征为依据,重新设计SSD目标检测方法的默认框生成比例,并结合输入图像大小及特征图感受野来减少特征融合层及默认框匹配运算量。实验表明改进后的SSD检测模型在BIT-Vehicle Dataset上的平均精度均值(mean average precision,mAP)达到了94.87%,相较于经典SSD目标检测模型的mAP提升了0.83个百分点,在搭载了Intel NCS2的Raspbery PI 3+上平均处理速度达到了16 frame/s。 展开更多
关键词 车辆检测 机器视觉 SSD模型 深度学习 树莓派
在线阅读 下载PDF
基于转置卷积操作改进的单阶段多边框目标检测方法 被引量:8
7
作者 郭川磊 何嘉 《计算机应用》 CSCD 北大核心 2018年第10期2833-2838,共6页
针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操... 针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操作扩大网络结构中深层特征图的尺寸,为浅层特征图引入对目标的高层抽象和上下文信息;其次,使用全连接卷积层减少浅层特征图在进行特征聚合时出现偏差的可能性;最后,将浅层特征图与表示了上下文信息的深层特征图拼接,并使用1×1卷积操作恢复通道数。特征聚合过程可以循环进行多次。实验结果表明,使用KITTI数据集,以交并比(Io U)为0. 7评估平均检测精度,与原始SSD模型相比,循环特征聚合模型的检测精度提高了5. 1个百分点;与已有的精度最高Faster R-CNN相比,检测精度提高了2个百分点。循环特征聚合模型能有效提升平均目标检测精度,生成高质量的边界框。 展开更多
关键词 目标检测 转置卷积 特征聚合 单阶段多边框目标检测模型
在线阅读 下载PDF
迁移学习用于牵引变电所视频多目标识别研究 被引量:5
8
作者 完颜幸幸 傅钦翠 吉鑫 《计算机工程与应用》 CSCD 北大核心 2019年第24期196-201,共6页
为实现牵引变电所视频图像的多目标识别,为牵引变电所的远程智能巡检提供技术支持。基于迁移学习的理论研究,利用SSD(Single Shot Multibox Detector)和YOLOv2(You Only Look Once v2)模型,实现牵引变电所视频图像中高压开关柜的仪表、... 为实现牵引变电所视频图像的多目标识别,为牵引变电所的远程智能巡检提供技术支持。基于迁移学习的理论研究,利用SSD(Single Shot Multibox Detector)和YOLOv2(You Only Look Once v2)模型,实现牵引变电所视频图像中高压开关柜的仪表、分合指示灯状态以及隔离开关的分合状态的自动识别。利用TensorFlow平台实现的多目标识别方法识别速度快而且鲁棒性好。 展开更多
关键词 牵引变电所 迁移学习 目标检测 YOLOv2模型 SSD模型
在线阅读 下载PDF
基于深度学习水果检测的研究与改进 被引量:19
9
作者 黄豪杰 段先华 黄欣辰 《计算机工程与应用》 CSCD 北大核心 2020年第3期127-133,共7页
为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD... 为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD采用多尺度特征融合的方式,从网络不同层抽取不同尺度的特征做预测,但是没有用到足够低层的特征,使得小物体的检测效果较差。通过将经典SSD训练使用的VGG16输入模型替换为ResNet-101,利用特征金字塔网络(FPN)结构将高层特征通过上采样和低层特征做融合。实验表明,改进的SSD300和SSD512水果检测模型的平均检测精度为83.05%和84.24%,经数据增强后精度也有所提升,适合于自然环境下水果的精确检测。 展开更多
关键词 深度学习 目标检测 SSD模型 ResNet-101模型 特征金字塔网络(FPN)
在线阅读 下载PDF
基于残差单发多框检测器模型的交通标志检测与识别 被引量:9
10
作者 张淑芳 朱彤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第5期940-949,共10页
针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度... 针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度分块检测。为了加快检测速度,采取由粗到精的策略,省略对纯背景图像块的预测.利用中等尺度图像块的初检结果缩小目标范围;对目标范围内的其他图像块进行检测;将所有图像块结果映射回原图像,并结合非极大值抑制实现精准识别。实验结果表明,该模型在公开的交通标志数据集Tsinghua-Tencent 100K上取得了94%的总体准确率和95%的总体召回率,对多分辨率图像中不同大小和形态的交通标志都具有良好的检测能力,鲁棒性较强。 展开更多
关键词 交通标志 残差单发多框检测器(SSD)模型 多尺度分块 检测 由粗到精
在线阅读 下载PDF
基于边缘计算的实时目标检测算法 被引量:3
11
作者 刘立昂 葛海波 +1 位作者 魏秋月 李文浩 《传感器与微系统》 CSCD 北大核心 2023年第12期115-118,共4页
为了解决目标检测算法——SSD算法存在模型参数过多、存储需求大、对小目标检测效果不理想、难以应用于边缘计算设备的问题,提出一种基于SSD的改进算法SFF-SSD。该算法将SSD骨干网络改为ShuffleNet V2,并将网络中的Stage2_3和Stage3_7... 为了解决目标检测算法——SSD算法存在模型参数过多、存储需求大、对小目标检测效果不理想、难以应用于边缘计算设备的问题,提出一种基于SSD的改进算法SFF-SSD。该算法将SSD骨干网络改为ShuffleNet V2,并将网络中的Stage2_3和Stage3_7进行特征融合,形成新的特征提取层N_Stage3_7进行目标检测。同时,使用焦点损失函数处理不均衡正负样本的方法,改善SSD算法检测精度不稳定的问题。最后,采用对不同特征通道的重要性进行重标定的方式,引入SENet,提高网络的表示能力。实验结果表明:SFF-SSD算法在VOC2007数据集上参数量为5.465 MB,检测速度为77 fps,检测精度为73.96%,因此该研究方法可以在保证实时性和检测精度的同时满足边缘设备部署的要求。 展开更多
关键词 边缘计算 SSD算法 ShuffleNet V2模型 SENet 焦点损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部