The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and con...The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and contributes to stable and healthy market growth.This study investigated the characteristics of electricity markets in different provinces and synthesized a comprehensive set of evaluation indicators to assess market effectiveness.The evaluation framework,comprising nine indicators organized into two tiers,was constructed based on three aspects:market design,market efficiency,and developmental coordination.Furthermore,a novel fuzzy multi-criteria decision-making evaluation model for electricity market performance was developed based on the Fuzzy-BWM and fuzzy COPRAS methodologies.This model aimed to ensure both accuracy and comprehensiveness in market operation assessment.Subsequently,empirical analyses were conducted on four typical provincial-level electricity markets in China.The results indicate that Guangdong’s electricity market performed best because of its effective balance of stakeholder interests and adherence to contractual integrity principles.Zhejiang and Shandong ranked second and third,respectively,whereas Sichuan exhibited the poorest market performance.Sichuan’s electricity market must be improved in terms of market design,such that market players can obtain a fairly competitive environment.The sensitivity analysis of the constructed indicators verified the effectiveness of the evaluation model proposed in this study.Finally,policy recommendations were proposed to facilitate the sustainable development of China’s electricity markets with the objective of transforming them into efficient and secure markets adaptable to the evolution of novel power systems.展开更多
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net...Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.展开更多
Objectives Renal replacement therapy(RRT)is increasingly adopted for critically ill patients diagnosed with acute kidney injury,but the optimal time for initiation remains unclear and prognosis is uncertain,leading to...Objectives Renal replacement therapy(RRT)is increasingly adopted for critically ill patients diagnosed with acute kidney injury,but the optimal time for initiation remains unclear and prognosis is uncertain,leading to medical complexity,ethical conflicts,and decision dilemmas in intensive care unit(ICU)settings.This study aimed to develop a decision aid(DA)for the family surrogate of critically ill patients to support their engagement in shared decision-making process with clinicians.Methods Development of DA employed a systematic process with user-centered design(UCD)principle,which included:(i)competitive analysis:searched,screened,and assessed the existing DAs to gather insights for design strategies,developmental techniques,and functionalities;(ii)user needs assessment:interviewed family surrogates in our hospital to explore target user group's decision-making experience and identify their unmet needs;(iii)evidence syntheses:integrate latest clinical evidence and pertinent information to inform the content development of DA.Results The competitive analysis included 16 relevant DAs,from which we derived valuable insights using existing resources.User decision needs were explored among a cohort of 15 family surrogates,revealing four thematic issues in decision-making,including stuck into dilemmas,sense of uncertainty,limited capacity,and delayed decision confirmation.A total of 27 articles were included for evidence syntheses.Relevant decision making knowledge on disease and treatment,as delineated in the literature sourced from decision support system or clinical guidelines,were formatted as the foundational knowledge base.Twenty-one items of evidence were extracted and integrated into the content panels of benefits and risks of RRT,possible outcomes,and reasons to choose.The DA was drafted into a web-based phototype using the elements of UCD.This platform could guide users in their preparation of decision-making through a sequential four-step process:identifying treatment options,weighing the benefits and risks,clarifying personal preferences and values,and formulating a schedule for formal shared decision-making with clinicians.Conclusions We developed a rapid prototype of DA tailored for family surrogate decision makers of critically ill patients in need of RRT in ICU setting.Future studies are needed to evaluate its usability,feasibility,and clinical effects of this intervention.展开更多
A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing...A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing two grey numbers based on probability is developed to calculate weighted values of the attributes. Secondly, the experts' evaluation scores for attribute values are presented in terms of internal grey numbers. Finally, a weight solving method for multiple-stages evaluation is proposed. An example analysis verifies the availability of the proposed method. The method provides a new way of thinking for solving grey decision problem.展开更多
Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are a...Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.展开更多
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea...To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.展开更多
Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is...Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.展开更多
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor...Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples.展开更多
Accelerating materials discovery crucially relies on strategies that efficiently sample the search space to label a pool of unlabeled data.This is important if the available labeled data sets are relatively small comp...Accelerating materials discovery crucially relies on strategies that efficiently sample the search space to label a pool of unlabeled data.This is important if the available labeled data sets are relatively small compared to the unlabeled data pool.Active learning with efficient sampling methods provides the means to guide the decision making to minimize the number of experiments or iterations required to find targeted properties.We review here different sampling strategies and show how they are utilized within an active learning loop in materials science.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantita...Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.展开更多
Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point ...Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe...A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.展开更多
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ...Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.展开更多
To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method ba...To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning(DRL) algorithm: the multistep double deep Q-network(MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.展开更多
Based on effectiveness analysis , a novel method is presented for combat aircraft top-hierarchy concept evaluation and decision-making. Applying multi-criterion decision-making ( MCDM ) and analytic hierarchy process ...Based on effectiveness analysis , a novel method is presented for combat aircraft top-hierarchy concept evaluation and decision-making. Applying multi-criterion decision-making ( MCDM ) and analytic hierarchy process , the new method can help to overcome the limitations of existing evaluation systems and decision-make methods.The proposed method includes the following process :( 1 ) Establish a multi-criterion and multi-hierarchy evaluation attribute system by introducing combat effectiveness ;( 2 ) Assign weight to the attributes and normalize them ;( 3 ) Evaluate and decision-make top-hierarchy aircraft concept based on effectiveness to reach a satisfactory design by comprehensively applying four multi-criterion decision-making methodologies , i.e.grey correlation projection method , weighted summation method , weighted quadrature method and ideal solution decision-making method , while considering the attribute hierarchy system and the logical relations among the attributes.Finally , an example is given to indicate the validity and feasibility of the proposed method.展开更多
Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision makin...Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision making, has been put forward by means of the sequence root method for analysis of hierarchical process (AHP). Using this method an example which is to define the index weigbt on multi-objective decision making in thc scheme optimization of mine design has been given.展开更多
Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious d...Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.展开更多
Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as dec...Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as decision makers to design an appropriate curricu lum and teaching activities play an important part in the whole teaching and learning.Many classroom teachers are working with students of different levels of ability,and they need to be able to adjust the curriculum to keep all of the students engaged and learning.It may also be necessary to change the pace of a curriculum to deal with problems as they arise.The essay analyse five parts in designing the curriculum as a teacher decision maker and get a conclusion according to the whole analysis course.展开更多
文摘The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and contributes to stable and healthy market growth.This study investigated the characteristics of electricity markets in different provinces and synthesized a comprehensive set of evaluation indicators to assess market effectiveness.The evaluation framework,comprising nine indicators organized into two tiers,was constructed based on three aspects:market design,market efficiency,and developmental coordination.Furthermore,a novel fuzzy multi-criteria decision-making evaluation model for electricity market performance was developed based on the Fuzzy-BWM and fuzzy COPRAS methodologies.This model aimed to ensure both accuracy and comprehensiveness in market operation assessment.Subsequently,empirical analyses were conducted on four typical provincial-level electricity markets in China.The results indicate that Guangdong’s electricity market performed best because of its effective balance of stakeholder interests and adherence to contractual integrity principles.Zhejiang and Shandong ranked second and third,respectively,whereas Sichuan exhibited the poorest market performance.Sichuan’s electricity market must be improved in terms of market design,such that market players can obtain a fairly competitive environment.The sensitivity analysis of the constructed indicators verified the effectiveness of the evaluation model proposed in this study.Finally,policy recommendations were proposed to facilitate the sustainable development of China’s electricity markets with the objective of transforming them into efficient and secure markets adaptable to the evolution of novel power systems.
基金supported in part by the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautical Science Foundation of China (Grant No. 20220001068001)National Natural Science Foundation of China (Grant No.61673327)+1 种基金Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. 2023-JC-QN-0733)China IndustryUniversity-Research Innovation Foundation (Grant No. 2022IT188)。
文摘Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.
文摘Objectives Renal replacement therapy(RRT)is increasingly adopted for critically ill patients diagnosed with acute kidney injury,but the optimal time for initiation remains unclear and prognosis is uncertain,leading to medical complexity,ethical conflicts,and decision dilemmas in intensive care unit(ICU)settings.This study aimed to develop a decision aid(DA)for the family surrogate of critically ill patients to support their engagement in shared decision-making process with clinicians.Methods Development of DA employed a systematic process with user-centered design(UCD)principle,which included:(i)competitive analysis:searched,screened,and assessed the existing DAs to gather insights for design strategies,developmental techniques,and functionalities;(ii)user needs assessment:interviewed family surrogates in our hospital to explore target user group's decision-making experience and identify their unmet needs;(iii)evidence syntheses:integrate latest clinical evidence and pertinent information to inform the content development of DA.Results The competitive analysis included 16 relevant DAs,from which we derived valuable insights using existing resources.User decision needs were explored among a cohort of 15 family surrogates,revealing four thematic issues in decision-making,including stuck into dilemmas,sense of uncertainty,limited capacity,and delayed decision confirmation.A total of 27 articles were included for evidence syntheses.Relevant decision making knowledge on disease and treatment,as delineated in the literature sourced from decision support system or clinical guidelines,were formatted as the foundational knowledge base.Twenty-one items of evidence were extracted and integrated into the content panels of benefits and risks of RRT,possible outcomes,and reasons to choose.The DA was drafted into a web-based phototype using the elements of UCD.This platform could guide users in their preparation of decision-making through a sequential four-step process:identifying treatment options,weighing the benefits and risks,clarifying personal preferences and values,and formulating a schedule for formal shared decision-making with clinicians.Conclusions We developed a rapid prototype of DA tailored for family surrogate decision makers of critically ill patients in need of RRT in ICU setting.Future studies are needed to evaluate its usability,feasibility,and clinical effects of this intervention.
基金Supported by the National Natural Science Foundation of China(90924022,70901041,71071077,71171113,71171116)the China Postdoctoral Science Foundation Funded Project(20100481137)+5 种基金the Humanisticand Social Science Foundation of the Ministry of Education of China(11YJC630032,12YJA630122,11YJC630273,09YJC630129)the Social Science Foundation of the College of Jiangsu Province(2011SJB630004)the Research Project of National Bureau of Statistics(2011LY008)the Jiangsu Planned Projects for Postdoctoral Research Funds(1101094C)the Qing Lan Project of Jiangsu Province(2010)the Educational Science Planning Key Projects of Jiangsu Piovince(B-a/2011/01/008)~~
文摘A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing two grey numbers based on probability is developed to calculate weighted values of the attributes. Secondly, the experts' evaluation scores for attribute values are presented in terms of internal grey numbers. Finally, a weight solving method for multiple-stages evaluation is proposed. An example analysis verifies the availability of the proposed method. The method provides a new way of thinking for solving grey decision problem.
基金Supported by the State Key Laboratory Foundation under Grant No.9140C2304080607the Aviation Science Foundation under Grant No.05F53027
文摘Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324).
文摘To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference.
基金supported by the National Key R&D Program of China(Grant No.2018YFC0809300)the National Natural Science Foundation of China(Grant No.51806247)+2 种基金the Key Technology Project of Petro China Co Ltd.(Grant No.ZLZX2020-05)the Foundation of Sinopec(Grant No.320034)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020YXZZ052)
文摘Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil environment for a long time.Identifying the causes of external corrosion and taking specific maintenance measures is essential.In this work,a risk analysis and maintenance decision-making model for natural gas pipelines with external corrosion is proposed based on a Bayesian network.A fault tree model is first employed to identify the causes of external corrosion.The Bayesian network for risk analysis is determined accordingly.The maintenance strategies are then inserted into the Bayesian network to show a reduction of the risk.The costs of maintenance strategies and the reduced risk after maintenance are combined in an optimization function to build a decision-making model.Because of the limitations of historical data,some of the parameters in the Bayesian network are obtained from a probabilistic estimation model,which combines expert experience and fuzzy set theory.Finally,a case study is carried out to verify the feasibility of the maintenance decision model.This indicates that the method proposed in this work can be used to provide effective maintenance schemes for different pipeline external corrosion scenarios and to reduce the possible losses caused by external corrosion.
文摘Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples.
基金the National Key Research and Development Program of China(Grant No.2017YFB0702401)the National Natural Science Foundation of China(Grant Nos.51571156,51671157,51621063,and 51931004).
文摘Accelerating materials discovery crucially relies on strategies that efficiently sample the search space to label a pool of unlabeled data.This is important if the available labeled data sets are relatively small compared to the unlabeled data pool.Active learning with efficient sampling methods provides the means to guide the decision making to minimize the number of experiments or iterations required to find targeted properties.We review here different sampling strategies and show how they are utilized within an active learning loop in materials science.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21190040,91430217,and 11305176)
文摘Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks.
文摘Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No. 2016ZC15008)
文摘A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.
基金supported by National Key Research and Development Program of China(2018YFC1504502).
文摘Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.
基金supported by the National Natural Science Foundation of China (No. 61573286)the Aeronautical Science Foundation of China (No. 20180753006)+2 种基金the Fundamental Research Funds for the Central Universities (3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province (2019JM-163, 2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning(DRL) algorithm: the multistep double deep Q-network(MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.
文摘Based on effectiveness analysis , a novel method is presented for combat aircraft top-hierarchy concept evaluation and decision-making. Applying multi-criterion decision-making ( MCDM ) and analytic hierarchy process , the new method can help to overcome the limitations of existing evaluation systems and decision-make methods.The proposed method includes the following process :( 1 ) Establish a multi-criterion and multi-hierarchy evaluation attribute system by introducing combat effectiveness ;( 2 ) Assign weight to the attributes and normalize them ;( 3 ) Evaluate and decision-make top-hierarchy aircraft concept based on effectiveness to reach a satisfactory design by comprehensively applying four multi-criterion decision-making methodologies , i.e.grey correlation projection method , weighted summation method , weighted quadrature method and ideal solution decision-making method , while considering the attribute hierarchy system and the logical relations among the attributes.Finally , an example is given to indicate the validity and feasibility of the proposed method.
文摘Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision making, has been put forward by means of the sequence root method for analysis of hierarchical process (AHP). Using this method an example which is to define the index weigbt on multi-objective decision making in thc scheme optimization of mine design has been given.
基金Supported by the Sci & Tech Development Foundation of Shaanxi province(2003K10G61)
文摘Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.
文摘Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as decision makers to design an appropriate curricu lum and teaching activities play an important part in the whole teaching and learning.Many classroom teachers are working with students of different levels of ability,and they need to be able to adjust the curriculum to keep all of the students engaged and learning.It may also be necessary to change the pace of a curriculum to deal with problems as they arise.The essay analyse five parts in designing the curriculum as a teacher decision maker and get a conclusion according to the whole analysis course.