For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteri...For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation.展开更多
This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideratio...This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.展开更多
A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the...A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by...The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.展开更多
文摘For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProjects(51179035,51779057)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.
基金Project(60234030) supported by the National Natural Science Foundation of China
文摘A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(61863034)
文摘The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.