To solve the problems of shaving and reusing information in the information system, a rules-based ontology constructing approach from object-relational databases is proposed. A 3-tuple ontology constructing model is p...To solve the problems of shaving and reusing information in the information system, a rules-based ontology constructing approach from object-relational databases is proposed. A 3-tuple ontology constructing model is proposed first. Then, four types of ontology constructing rules including class, property, property characteristics, and property restrictions ave formalized according to the model. Experiment results described in Web ontology language prove that our proposed approach is feasible for applying in the semantic objects project of semantic computing laboratory in UC Irvine. Our approach reduces about twenty percent constructing time compared with the ontology construction from relational databases.展开更多
The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to th...The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules.展开更多
To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retr...To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retrieval of large image databases. CMA takes advantages of k-means and self-adaptive algorithms. It is simple and works without any user interactions. There are two main stages in this algorithm. In the first stage, it classifies images in a database into several clusters, and automatically gets the necessary parameters for the next stage-k-means iteration. The CMA algorithm is tested on a large database of more than ten thousand images and compare it with k-means algorithm. Experimental results show that this algorithm is effective in both precision and retrieval time.展开更多
基金supported by the National Natural Science Foundation of China (60471055)the National "863" High Technology Research and Development Program of China (2007AA01Z443)
文摘To solve the problems of shaving and reusing information in the information system, a rules-based ontology constructing approach from object-relational databases is proposed. A 3-tuple ontology constructing model is proposed first. Then, four types of ontology constructing rules including class, property, property characteristics, and property restrictions ave formalized according to the model. Experiment results described in Web ontology language prove that our proposed approach is feasible for applying in the semantic objects project of semantic computing laboratory in UC Irvine. Our approach reduces about twenty percent constructing time compared with the ontology construction from relational databases.
文摘The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules.
基金This project was supported by National High Tech Foundation of 863 (2001AA115123)
文摘To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retrieval of large image databases. CMA takes advantages of k-means and self-adaptive algorithms. It is simple and works without any user interactions. There are two main stages in this algorithm. In the first stage, it classifies images in a database into several clusters, and automatically gets the necessary parameters for the next stage-k-means iteration. The CMA algorithm is tested on a large database of more than ten thousand images and compare it with k-means algorithm. Experimental results show that this algorithm is effective in both precision and retrieval time.