This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measuremen...In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measurement and prevention.This paper presented a numerical investigation of stratified airflow scenario in a high-space industrial hall with validated commercial code and experimentally acquired boundary conditions.Based upon an actually undergoing engineering project,this study investigated the performance of the buoyancy-driven displacement ventilation in a large welding hall with big components manufactured.The results have demonstrated that stratified airflow sustained by thermal buoyancy provides zoning effect in terms of clean and polluted regions except minor stagnant eddy areas.The competition between negative buoyant jets from displacement radial diffusers and positive buoyant plume from bulk object constitutes the complex transport characteristics under and above stratification interface.Entrainment,downdraft and turbulent eddy motion complicate the upper mixing zone,but the exhaust outlet plays a less important role in the whole field flow.And the corresponding suggestions concerning computational stability and convergence,further improvements in modelling and measurements were given.展开更多
To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowle...To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金Supported by the National Natural Science Foundation of China(10775047)Hunan Provincial Natural Science Foundation of China(08JJ3093)the Key Programof Scientific and Technical of Hunan Province(2007FJ2006)
文摘In industrial environment,heat sources often are contaminant sources and health threatening contaminants are mainly passive,so a detailed understanding of airflow mode can assist in work environment hygiene measurement and prevention.This paper presented a numerical investigation of stratified airflow scenario in a high-space industrial hall with validated commercial code and experimentally acquired boundary conditions.Based upon an actually undergoing engineering project,this study investigated the performance of the buoyancy-driven displacement ventilation in a large welding hall with big components manufactured.The results have demonstrated that stratified airflow sustained by thermal buoyancy provides zoning effect in terms of clean and polluted regions except minor stagnant eddy areas.The competition between negative buoyant jets from displacement radial diffusers and positive buoyant plume from bulk object constitutes the complex transport characteristics under and above stratification interface.Entrainment,downdraft and turbulent eddy motion complicate the upper mixing zone,but the exhaust outlet plays a less important role in the whole field flow.And the corresponding suggestions concerning computational stability and convergence,further improvements in modelling and measurements were given.
基金supported by the National Natural Science Foundation of China(61273198)
文摘To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金浙江省“尖兵”“领雁”研发攻关计划(2024C01058)浙江省“十四五”第二批本科省级教学改革备案项目(JGBA2024014)+2 种基金2025年01月批次教育部产学合作协同育人项目(2501270945)2024年度浙江大学本科“AI赋能”示范课程建设项目(24)浙江大学第一批AI For Education系列实证教学研究项目(202402)。