Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inv...Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.展开更多
Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa t...Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa tic transfer equipments. This paper proposes a new approach for the shape design and manufacturing of the cylindrical cam. The design approach uses the relative velocity concept and the manufacturing approach uses the inverse kinematics concept. For the shape desig n, the contact points between the cam and the follower roller are calculated bas ed on relative velocity of which the direction is on the common tangential line, and then the whole shape of cam is determined from transformation of the coordi nate system. For the manufacturing procedures, the location and the orientation of cutter path can be allocated corresponding to the designed shape data. The in tegral NC code for multi-axis CNC machining center is created using the inverse kinematics concept from the data of the location and the orientation of cutter path. As the advantages of the proposed approach, the machine tool is designed t o having an alternative size in fabricating the general cam, while the tool must be fitted to diameter size of the follower in the conventional approach. Finally, CAD/CAM program, "Cylindrical DAM", is developed on C++ lan guage. This program can perform shape design, manufacturing and kinematics simul ation, which can make integral NC code for multi-axis CNC machining center. The proposed method can be applied easily on fields of industries.展开更多
文摘Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes.
文摘Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa tic transfer equipments. This paper proposes a new approach for the shape design and manufacturing of the cylindrical cam. The design approach uses the relative velocity concept and the manufacturing approach uses the inverse kinematics concept. For the shape desig n, the contact points between the cam and the follower roller are calculated bas ed on relative velocity of which the direction is on the common tangential line, and then the whole shape of cam is determined from transformation of the coordi nate system. For the manufacturing procedures, the location and the orientation of cutter path can be allocated corresponding to the designed shape data. The in tegral NC code for multi-axis CNC machining center is created using the inverse kinematics concept from the data of the location and the orientation of cutter path. As the advantages of the proposed approach, the machine tool is designed t o having an alternative size in fabricating the general cam, while the tool must be fitted to diameter size of the follower in the conventional approach. Finally, CAD/CAM program, "Cylindrical DAM", is developed on C++ lan guage. This program can perform shape design, manufacturing and kinematics simul ation, which can make integral NC code for multi-axis CNC machining center. The proposed method can be applied easily on fields of industries.