期刊文献+
共找到233,839篇文章
< 1 2 250 >
每页显示 20 50 100
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
1
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 Ballistic missile Trajectory prediction The boost phase data and knowledge driven The BP neural network
在线阅读 下载PDF
A new clustering algorithm for large datasets 被引量:1
2
作者 李清峰 彭文峰 《Journal of Central South University》 SCIE EI CAS 2011年第3期823-829,共7页
The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between c... The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering. 展开更多
关键词 data mining Circle algorithm clustering categorical data clustering aggregation
在线阅读 下载PDF
Study on the Hungarian algorithm for the maximum likelihood data association problem 被引量:5
3
作者 Wang Jianguo He Peikun Cao Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期27-32,共6页
A specialized Hungarian algorithm was developed here for the maximum likelihood data association problem with two implementation versions due to presence of false alarms and missed detections. The maximum likelihood d... A specialized Hungarian algorithm was developed here for the maximum likelihood data association problem with two implementation versions due to presence of false alarms and missed detections. The maximum likelihood data association problem is formulated as a bipartite weighted matching problem. Its duality and the optimality conditions are given. The Hungarian algorithm with its computational steps, data structure and computational complexity is presented. The two implementation versions, Hungarian forest (HF) algorithm and Hungarian tree (HT) algorithm, and their combination with the naYve auction initialization are discussed. The computational results show that HT algorithm is slightly faster than HF algorithm and they are both superior to the classic Munkres algorithm. 展开更多
关键词 TRACKING data association Linear programming Hungarian algorithm
在线阅读 下载PDF
Study on data association algorithm of multi-passive-sensor location system 被引量:3
4
作者 周莉 何友 张维华 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期489-493,共5页
Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-find... Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation. 展开更多
关键词 data association algorithm multi-target programming model joint information cost matrix.
在线阅读 下载PDF
Research on Data Routing Model Based on Ant Colony Algorithms 被引量:1
5
作者 龚跃 吴航 +2 位作者 鲍杰 王君军 张艳秋 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期269-272,共4页
Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating mod... Improved traditional ant colony algorithms,a data routing model used to the data remote exchange on WAN was presented.In the model,random heuristic factors were introduced to realize multi-path search.The updating model of pheromone could adjust the pheromone concentration on the optimal path according to path load dynamically to make the system keep load balance.The simulation results show that the improved model has a higher performance on convergence and load balance. 展开更多
关键词 computer software data transmission ant colony algorithm routing model
在线阅读 下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
6
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS MULTI-SENSOR data FUSION algorithm ENGINE
在线阅读 下载PDF
New multi-layer data correlation algorithm for multi-passive-sensor location system 被引量:1
7
作者 Zhou Li Li Lingyun He You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期667-672,共6页
Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough corr... Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective. 展开更多
关键词 multi-passive-sensor data correlation multi-layer correlation algorithm location system correlation cost
在线阅读 下载PDF
Truth finder algorithm based on entity attributes for data conflict solution
8
作者 Xiaolong Xu Xinxin Liu +1 位作者 Xiaoxiao Liu Yanfei Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期617-626,共10页
The Internet now is a large-scale platform with big data. Finding truth from a huge dataset has attracted extensive attention, which can maintain the quality of data collected by users and provide users with accurate ... The Internet now is a large-scale platform with big data. Finding truth from a huge dataset has attracted extensive attention, which can maintain the quality of data collected by users and provide users with accurate and efficient data. However, current truth finder algorithms are unsatisfying, because of their low accuracy and complication. This paper proposes a truth finder algorithm based on entity attributes (TFAEA). Based on the iterative computation of source reliability and fact accuracy, TFAEA considers the interactive degree among facts and the degree of dependence among sources, to simplify the typical truth finder algorithms. In order to improve the accuracy of them, TFAEA combines the one-way text similarity and the factual conflict to calculate the mutual support degree among facts. Furthermore, TFAEA utilizes the symmetric saturation of data sources to calculate the degree of dependence among sources. The experimental results show that TFAEA is not only more stable, but also more accurate than the typical truth finder algorithms. 展开更多
关键词 truth finder data reliability entity attribute data conflict
在线阅读 下载PDF
Performance evaluation for intelligent optimization algorithms in self-potential data inversion 被引量:4
9
作者 崔益安 朱肖雄 +2 位作者 陈志学 刘嘉文 柳建新 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2659-2668,共10页
The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and e... The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation. 展开更多
关键词 SELF-POTENTIAL INVERSION intelligent algorithm
在线阅读 下载PDF
Utility function based fair data scheduling algorithm for OFDM wireless network 被引量:3
10
作者 Guo Kunqi Sun Lixin Jia Shilou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期731-738,共8页
A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subca... A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions. 展开更多
关键词 OFDM SCHEDULING algorithm utility function.
在线阅读 下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
11
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
在线阅读 下载PDF
Energy-efficient virtual machine consolidation algorithm in cloud data centers 被引量:3
12
作者 ZHOU Zhou HU Zhi-gang YU Jun-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2331-2341,共11页
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-... Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations. 展开更多
关键词 cloud computing energy consumption linear weighted method VIRTUAL MACHINE CONSOLIDATION VIRTUAL MACHINE selection algorithm
在线阅读 下载PDF
Over-sampling algorithm for imbalanced data classification 被引量:13
13
作者 XU Xiaolong CHEN Wen SUN Yanfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1182-1191,共10页
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic... For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value. 展开更多
关键词 imbalanced data density-based spatial clustering of applications with noise(DBSCAN) synthetic minority over sampling technique(SMOTE) over-sampling.
在线阅读 下载PDF
Wavelet neural network aerodynamic modeling from flight data based on pso algorithm with information sharing and velocity disturbance 被引量:4
14
作者 甘旭升 端木京顺 +1 位作者 孟月波 丛伟 《Journal of Central South University》 SCIE EI CAS 2013年第6期1592-1601,共10页
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i... For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data. 展开更多
关键词 aerodynamic modeling flight data WAVELET neural network particle swarm optimization
在线阅读 下载PDF
Modified Omega-K algorithm for processing helicopter-borne frequency modulated continuous waveform rotating synthetic aperture radar data 被引量:2
15
作者 Dong Li Guisheng Liao +1 位作者 Yong Liao Lisheng Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期476-485,共10页
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ... With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results. 展开更多
关键词 helicopter-borne rotating synthetic aperture radar(ROSAR) frequency modulated continuous wave (FMCW) improved Omega-K algorithm two-dimensional spectrum.
在线阅读 下载PDF
Automatic fuzzy-DBSCAN algorithm for morphological and overlapping datasets 被引量:5
16
作者 YELGHI Aref KÖSE Cemal +1 位作者 YELGHI Asef SHAHKAR Amir 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1245-1253,共9页
Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clu... Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms. 展开更多
关键词 CLUSTERING density-based spatial clustering of applications with noise(DBSCAN) FUZZY OVERLAPPING data mining
在线阅读 下载PDF
An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1
17
作者 梅英 谭冠政 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu... To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 展开更多
关键词 PREDICTION CLASSIFICATION brain emotional learning genetic algorithm
在线阅读 下载PDF
Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit 被引量:1
18
作者 Yifei ZOU Senmao QI +1 位作者 Cong'an XU Dongxiao YU 《计算机科学》 CSCD 北大核心 2023年第2期13-22,共10页
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ... As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm. 展开更多
关键词 Weighted data aggregation End-to-edge communication Multi-armed bandit Edge intelligence
在线阅读 下载PDF
Heuristic based data scheduling algorithm for OFDMA wireless network
19
作者 Guo Kunqi Sun Lixin +1 位作者 Jia Shilou Yu Xiaoyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期46-51,共6页
A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks. A distributed scheduling algorithm (DSA) for system model op... A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks. A distributed scheduling algorithm (DSA) for system model optimization is proposed that combines the randomly chosen subcarrier according to the channel condition of local subcarriers with link power control to limit interference caused by the reuse of subcarrier among links. For the global fairness improvement of algorithms, a global power control scheduling algorithm (GPCSA) based on the proposed DSA is presented and dynamically allocates global power according to difference between average carrier-noise-ratio of selected local links and system link protection ratio. Simulation results demonstrate that the proposed algorithms achieve better efficiency and fairness compared with other existing algorithms. 展开更多
关键词 orthogonal frequency division multiplexing access (OFDMA) SCHEDULING algorithm AD-HOC
在线阅读 下载PDF
Robust estimation algorithm for multiple-structural data
20
作者 Zhiling Wang Zonghai Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期900-906,共7页
This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed... This paper proposes a robust method of parameter estimation and data classification for multiple-structural data based on the linear error in variable(EIV) model.The traditional EIV model fitting problem is analyzed and a robust growing algorithm is developed to extract the underlying linear structure of the observed data.Under the structural density assumption,the C-step technique borrowed from the Rousseeuw's robust MCD estimator is used to keep the algorithm robust and the mean-shift algorithm is adopted to ensure a good initialization.To eliminate the model ambiguities of the multiple-structural data,statistical hypotheses tests are used to refine the data classification and improve the accuracy of the model parameter estimation.Experiments show that the efficiency and robustness of the proposed algorithm. 展开更多
关键词 robust estimation computer vision linear error in variable(EIV) model multiple-structural data MEAN-SHIFT C-step.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部