In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative ac...In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.展开更多
A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based...A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based on this criterion, some sufficient conditions on two classes of robust H2 problems for uncertain sampled-data control systems axe presented through a set of coupled linear matrix inequalities. Finally, the less conservatism and potential of the developed results are illustrated via a numerical example.展开更多
This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a caus...This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a causal sampled-data controller, which guarantees the asymptotical stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed H∞ performance bound for all admissible uncertainties. Sufficient condition for the solvability of the problem is established in terms of linear matrix inequalities (LMIs). It is shown that the desired H∞ controller can be constructed by solving certain LMIs. An illustrative example is given to demonstrate the effectiveness of the proposed method.展开更多
The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjud...The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.展开更多
Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler...Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of offshore fishery resources in China.An XGBoost algorithm was introduced and optimized through Harris Hawks Optimization(HHO),to develop a model for identifying trawler fishing behaviour.The model demonstrated exceptional performance,achieving accuracy,sensitivity,specificity,and the Matthews correlation coefficient of 0.9713,0.9806,0.9632,and 0.9425,respectively.Using this model to detect fishing activities,the fishing effort of trawlers from Shandong Province in the sea area between 119°E to 124°E and 32°N to 40°N in 2021 was quantified.A heatmap depicting fishing effort,generated with a spatial resolution of 1/8°,revealed that fishing activities were predominantly concentrated in two regions:121.1°E to 124°E,35.7°N to 38.7°N,and 119.8°E to 122.8°E,33.6°N to 35.4°N.This research can provide a foundation for quantitative evaluations of fishery resources,which can offer vital data to promote the sustainable development of marine capture fisheries.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte...The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.展开更多
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t...Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challeng...Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challenging task. A multidatabase common data model is firstly introduced based on XML, named XML-based Integration Data Model (XIDM), which is suitable for integrating different types of schemas. Then an approach of schema mappings based on XIDM in multidatabase systems has been presented. The mappings include global mappings, dealing with horizontal and vertical partitioning between global schemas and export schemas, and local mappings, processing the transformation between export schemas and local schemas. Finally, the illustration and implementation of schema mappings in a multidatabase prototype - Panorama system are also discussed. The implementation results demonstrate that the XIDM is an efficient model for managing multiple heterogeneous data sources and the approaches of schema mapping based on XIDM behave very well when integrating relational, object-oriented database systems and other file systems.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists o...With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.展开更多
Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,th...Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.展开更多
For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve th...For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve the precision of the system reliability assessment. If the multi-level pass/fail data are overlapping,one challenging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and finally simplifying the likelihood function. An example of a satellite rolling control system demonstrates the feasibility and the efficiency of the proposed approach.展开更多
Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-find...Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.展开更多
基金supported by the National Natural Science Fandation of China (6067208960772075)
文摘In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.
文摘A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based on this criterion, some sufficient conditions on two classes of robust H2 problems for uncertain sampled-data control systems axe presented through a set of coupled linear matrix inequalities. Finally, the less conservatism and potential of the developed results are illustrated via a numerical example.
基金supported by the National Natural Science Foundation of China (60574004 60736024+1 种基金 60674043) the Key Project of Science and Technology Research of the Ministry of Education of China (708069).
文摘This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a causal sampled-data controller, which guarantees the asymptotical stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed H∞ performance bound for all admissible uncertainties. Sufficient condition for the solvability of the problem is established in terms of linear matrix inequalities (LMIs). It is shown that the desired H∞ controller can be constructed by solving certain LMIs. An illustrative example is given to demonstrate the effectiveness of the proposed method.
基金Supported by State Key Program of National Natural Science Foundation of China (60934009) National Natural Science Foundations of China (60801048 60974062)
基金Supported by the Harbin Engineering University Fund for Basic Projects (heuft06041)
文摘The initial motivation of the lifting technique is to solve the H∞control problems. However, the conventional weighted H∞design does not meet the conditions required by lifting, so the result often leads to a misjudgement of the design. Two conditions required by using the lifting technique are presented based on the basic formulae of the lifting. It is pointed out that only the H∞disturbance attenuation problem with no weighting functions can meet these conditions, hence, the application of the lifting technique is quite limited.
文摘Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of offshore fishery resources in China.An XGBoost algorithm was introduced and optimized through Harris Hawks Optimization(HHO),to develop a model for identifying trawler fishing behaviour.The model demonstrated exceptional performance,achieving accuracy,sensitivity,specificity,and the Matthews correlation coefficient of 0.9713,0.9806,0.9632,and 0.9425,respectively.Using this model to detect fishing activities,the fishing effort of trawlers from Shandong Province in the sea area between 119°E to 124°E and 32°N to 40°N in 2021 was quantified.A heatmap depicting fishing effort,generated with a spatial resolution of 1/8°,revealed that fishing activities were predominantly concentrated in two regions:121.1°E to 124°E,35.7°N to 38.7°N,and 119.8°E to 122.8°E,33.6°N to 35.4°N.This research can provide a foundation for quantitative evaluations of fishery resources,which can offer vital data to promote the sustainable development of marine capture fisheries.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
文摘The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01B187).
文摘Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
文摘Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challenging task. A multidatabase common data model is firstly introduced based on XML, named XML-based Integration Data Model (XIDM), which is suitable for integrating different types of schemas. Then an approach of schema mappings based on XIDM in multidatabase systems has been presented. The mappings include global mappings, dealing with horizontal and vertical partitioning between global schemas and export schemas, and local mappings, processing the transformation between export schemas and local schemas. Finally, the illustration and implementation of schema mappings in a multidatabase prototype - Panorama system are also discussed. The implementation results demonstrate that the XIDM is an efficient model for managing multiple heterogeneous data sources and the approaches of schema mapping based on XIDM behave very well when integrating relational, object-oriented database systems and other file systems.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
文摘With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.
基金supported by the Natural Science Foundation of Jiangsu Province (BK2006202)
文摘Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61304218)
文摘For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve the precision of the system reliability assessment. If the multi-level pass/fail data are overlapping,one challenging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and finally simplifying the likelihood function. An example of a satellite rolling control system demonstrates the feasibility and the efficiency of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China (60172033) the Excellent Ph.D.PaperAuthor Foundation of China (200036 ,200237) .
文摘Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.