期刊文献+
共找到126,138篇文章
< 1 2 250 >
每页显示 20 50 100
Wavelet neural network aerodynamic modeling from flight data based on pso algorithm with information sharing and velocity disturbance 被引量:4
1
作者 甘旭升 端木京顺 +1 位作者 孟月波 丛伟 《Journal of Central South University》 SCIE EI CAS 2013年第6期1592-1601,共10页
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i... For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data. 展开更多
关键词 aerodynamic modeling flight data WAVELET neural network particle swarm optimization
在线阅读 下载PDF
Inter-agency government information sharing under data-driven blockchain framework 被引量:1
2
作者 XIAO Jiong-en HONG Ming DING Li-ping 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第8期1369-1376,共8页
The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fu... The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework. 展开更多
关键词 government data processing blockchain PAGERANK APRIORI
在线阅读 下载PDF
Scientific Data:Preserving, Archiving and Sharing
3
作者 MENG Xianxue YANG Congke 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期174-177,共4页
Scientific data refers to the data or data sets generated from scientific research process through observations, experiments, calculations and analyses. These data are fundamental components for developing new knowled... Scientific data refers to the data or data sets generated from scientific research process through observations, experiments, calculations and analyses. These data are fundamental components for developing new knowledge, advancing technological progress, and creating wealth. In recent years, scientific data has been attracting more and more attention for its preserving, archiving and sharing. 展开更多
关键词 scientific data PRESERVING archiving and sharing
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:4
4
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Fishing Effort Estimation of Trawlers Based on Vessel Monitoring System Data
5
作者 LI Dan LU Feng +8 位作者 XU Shuo WANG Yu XUE Muhan NI Hanchen FANG Hui ZHANG Man MA Zhenhua CHEN Zuozhi XU Jian 《农业机械学报》 北大核心 2025年第2期523-532,共10页
Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler... Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of offshore fishery resources in China.An XGBoost algorithm was introduced and optimized through Harris Hawks Optimization(HHO),to develop a model for identifying trawler fishing behaviour.The model demonstrated exceptional performance,achieving accuracy,sensitivity,specificity,and the Matthews correlation coefficient of 0.9713,0.9806,0.9632,and 0.9425,respectively.Using this model to detect fishing activities,the fishing effort of trawlers from Shandong Province in the sea area between 119°E to 124°E and 32°N to 40°N in 2021 was quantified.A heatmap depicting fishing effort,generated with a spatial resolution of 1/8°,revealed that fishing activities were predominantly concentrated in two regions:121.1°E to 124°E,35.7°N to 38.7°N,and 119.8°E to 122.8°E,33.6°N to 35.4°N.This research can provide a foundation for quantitative evaluations of fishery resources,which can offer vital data to promote the sustainable development of marine capture fisheries. 展开更多
关键词 TRAWLER vessel position data machine learning fishing effort
在线阅读 下载PDF
Reverse design of solid propellant grain based on deep learning:Imaging internal ballistic data
6
作者 Lin Sun Xiangyu Peng +4 位作者 Yang Liu Shu Long Weihua Hui Ran Wei Futing Bao 《Defence Technology(防务技术)》 2025年第8期374-385,共12页
The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte... The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology. 展开更多
关键词 SRM Propellant grain reverse design Time-series data imaging CNN
在线阅读 下载PDF
Controlling update distance and enhancing fair trainable prototypes in federated learning under data and model heterogeneity
7
作者 Kangning Yin Zhen Ding +1 位作者 Xinhui Ji Zhiguo Wang 《Defence Technology(防务技术)》 2025年第5期15-31,共17页
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t... Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios. 展开更多
关键词 Heterogeneous federated learning Model heterogeneity data heterogeneity Contrastive learning
在线阅读 下载PDF
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
8
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 Ballistic missile Trajectory prediction The boost phase data and knowledge driven The BP neural network
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
9
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Optimal two-channel switching false data injection attacks against remote state estimation of the unmanned aerial vehicle cyber-physical system
10
作者 Juhong Zheng Dawei Liu +1 位作者 Jinxing Hua Xin Ning 《Defence Technology(防务技术)》 2025年第5期319-332,共14页
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ... A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section. 展开更多
关键词 Unmanned aerial vehicle(UAV) Cyber physical systems(CPS) K-L divergence Multi-sensor fusion kalman filter Stealthy switching false data injection(FDI) ATTACKS
在线阅读 下载PDF
远程测控数据传输中的DataSocket技术应用 被引量:7
11
作者 李伯全 潘海彬 +1 位作者 罗开玉 周重益 《江苏大学学报(自然科学版)》 EI CAS 2004年第4期285-288,共4页
作为一种新的网络通讯编程技术,DataSocket是利用虚拟仪器技术构建远程、分布式网络测控系统的核心技术之一.DataSocket以TCP/IP为基础,支持多种协议,并对底层进行了高度封装,大大简化了同一台计算机上的应用程序,通过网络实现不同计算... 作为一种新的网络通讯编程技术,DataSocket是利用虚拟仪器技术构建远程、分布式网络测控系统的核心技术之一.DataSocket以TCP/IP为基础,支持多种协议,并对底层进行了高度封装,大大简化了同一台计算机上的应用程序,通过网络实现不同计算机上的动态数据交换.其独特之处在于:为自动化测量应用程序提供了一个易学易用,性能较高的编程接口,实现数据的实时发布和共享.以LabVIEW作为虚拟仪器软件开发平台,基于DataSocket技术组建远程测控系统并利用先进的浏览器技术进行试验,取得了成功,实现了真正意义上的远程测控. 展开更多
关键词 虚拟仪器 测控网络 data SOCKET
在线阅读 下载PDF
Data Volley软件在排球技、战术统计分析中的应用研究 被引量:27
12
作者 陈贞祥 仰红慧 《中国体育科技》 CSSCI 北大核心 2014年第3期19-24,共6页
通过总结多年使用Data Volley软件备战国内大赛的经验,结合文献资料,从实战出发对Data Volley软件在排球技、战术统计中的应用现状、软件界面及功能、赛中应用和赛前、赛后的应用以及软件的优缺点四个方面进行了研究。以期能给初学者提... 通过总结多年使用Data Volley软件备战国内大赛的经验,结合文献资料,从实战出发对Data Volley软件在排球技、战术统计中的应用现状、软件界面及功能、赛中应用和赛前、赛后的应用以及软件的优缺点四个方面进行了研究。以期能给初学者提供帮助,使其在短时间内有序、高效、快速的掌握它在当前的应用状况、应用技巧和优缺点。在此基础上,有创新的熟练使用好此软件,从而提高国内排球技、战术统计分析的水平和效率。 展开更多
关键词 data Volley软件 排球 战术 应用
在线阅读 下载PDF
刀具柱面Data Matrix码几何畸变的仿真分析 被引量:4
13
作者 李夏霜 何卫平 +2 位作者 雷蕾 王伟 林清松 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第9期1349-1354,共6页
分析了刀具柱面Data Matrix(DM)码几何畸变的原理与过程,利用透视投影的方法建立了柱面DM码的几何畸变模型并对其进行仿真.结果表明,该模型较好地模拟了DM码在刀具柱面的几何畸变状况.通过仿真分析,获得了在一定曲率柱面上标刻DM码的合... 分析了刀具柱面Data Matrix(DM)码几何畸变的原理与过程,利用透视投影的方法建立了柱面DM码的几何畸变模型并对其进行仿真.结果表明,该模型较好地模拟了DM码在刀具柱面的几何畸变状况.通过仿真分析,获得了在一定曲率柱面上标刻DM码的合适尺寸以及采集过程中相机的合适几何参数. 展开更多
关键词 刀具柱面 data Matrix码 透视投影 几何畸变 仿真
在线阅读 下载PDF
Data One项目及其对我国数据监管工作的启示 被引量:3
14
作者 许鑫 刘甜 于霜 《图书与情报》 CSSCI 北大核心 2014年第6期109-116,共8页
文章通过对Data One项目完善的基础架构、强大的工具包、高效的组织架构和分工明确的工作小组的分析与研究,总结出了实施数据监管的关键流程:构建数据监管基础架构、制定数据管理计划、选择元数据标准、规范与统一数据、数据存储与归档... 文章通过对Data One项目完善的基础架构、强大的工具包、高效的组织架构和分工明确的工作小组的分析与研究,总结出了实施数据监管的关键流程:构建数据监管基础架构、制定数据管理计划、选择元数据标准、规范与统一数据、数据存储与归档,最后借鉴国外诸多的研究对国内的数据监管服务提出了相应的推进策略。 展开更多
关键词 数据监管 data ONE 科研数据
在线阅读 下载PDF
利用LSF调度程序的插件机制在Gfarm上实现Data aware调度 被引量:2
15
作者 魏晓辉 Li Wilfred +2 位作者 徐高潮 胡亮 鞠九滨 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第6期763-767,共5页
利用LSF调度程序的插件机制实现了一个可嵌入的调度模块,该模块实现了对G farm作业的Data aware调度和对G farm系统文件副本的管理.由于使用了插件技术,调度模块易于实现和扩充,且可以和系统中其他调度策略协同工作.
关键词 计算网格 数据网格 data aware调度 LSF Gfarm
在线阅读 下载PDF
基于Panel Data模型的中国土地市场发育区域差异及其对房价的影响 被引量:16
16
作者 谭术魁 李雅楠 《中国土地科学》 CSSCI 北大核心 2013年第2期9-15,共7页
研究目的:分析中国土地市场发育的区域差异,以及这种差异对房价的影响。研究方法:面板数据模型。研究结果:(1)中国土地市场发育水平存在区域差异,区域内部的发育水平也不尽相同,东、中、西部的差异呈现先缩小后加大的趋势;(2)土地市场... 研究目的:分析中国土地市场发育的区域差异,以及这种差异对房价的影响。研究方法:面板数据模型。研究结果:(1)中国土地市场发育水平存在区域差异,区域内部的发育水平也不尽相同,东、中、西部的差异呈现先缩小后加大的趋势;(2)土地市场发育对房价的影响同样存在区域差异,东部、中部地区具有负向影响,且东部较中部显著,西部地区具有正向影响。研究结论:(1)提高土地市场发育水平可以促使房价达到合理水平;(2)在提高土地市场化水平的基础上不断完善市场经济环境,有利于这种作用的实现。 展开更多
关键词 土地经济 土地市场发育 房价 PANEL data模型
在线阅读 下载PDF
基于AEEMD和改进DATA-SSI算法的桥梁结构模态参数自动化识别 被引量:6
17
作者 徐健 周志祥 +1 位作者 赵丽娜 何杰 《土木工程学报》 EI CSCD 北大核心 2017年第7期87-98,共12页
模态参数作为桥梁结构最重要的动力参数之一,在实际运用中,可通过监测其变化情况来辨识结构的使用性能,精确地参数识别对保障桥梁健康运营具有十分重要的意义。鉴于此,该文对现阶段常用的振动信号降噪处理算法和模态参数识别算法进行了... 模态参数作为桥梁结构最重要的动力参数之一,在实际运用中,可通过监测其变化情况来辨识结构的使用性能,精确地参数识别对保障桥梁健康运营具有十分重要的意义。鉴于此,该文对现阶段常用的振动信号降噪处理算法和模态参数识别算法进行了相应的改进。一方面,提出一种新的信号自适应分解与重构算法,即自适应总体平均经验模态分解算法(AEEMD),该算法相比总体平均经验模态分解算法(EEMD)而言,能够根据信号的自身特征自动化确定添加白噪声的幅值标准差和集成平均次数;能更好地处理端点效应;同时还能够保证所得本征模态函数之间不存在模态混叠现象;最终实现有效IMF分量的自动化筛选和信号重构。另一方面,将多维数据聚类分析算法引入随机子空间算法中,并以频率值、阻尼比以及振型系数为因子建立判别矩阵,以智能化区分虚假模态和真实模态,最终实现模态参数自动化识别。文章最后分别用模拟信号和实际桥梁测试信号对所提算法的有效性进行验证,结果表明,该文所提算法能运用于实际桥梁结构的模态参数自动化识别。 展开更多
关键词 桥梁结构 EEMD 信号分解 data—SSI 模态参数 自动化识别
在线阅读 下载PDF
Data Matrix二维条形码解码器图像预处理研究 被引量:15
18
作者 邹沿新 杨高波 《计算机工程与应用》 CSCD 北大核心 2009年第34期183-185,188,共4页
DM码是一种常见的二维条形码,图像预处理是DM码解码器自动识别过程中的重要步骤。提出一种实用的DM码识别图像预处理方法。它没有使用传统的边缘检测和直线检测手段,因此受背景噪声、几何失真的影响较小。此外,使用了校正铁路线坐标,并... DM码是一种常见的二维条形码,图像预处理是DM码解码器自动识别过程中的重要步骤。提出一种实用的DM码识别图像预处理方法。它没有使用传统的边缘检测和直线检测手段,因此受背景噪声、几何失真的影响较小。此外,使用了校正铁路线坐标,并按区域取样生成码流,显著提高了DM码的识别速度和识别率。实验结果表明,该算法可以克服DM码识别过程中易受噪声干扰、光照不均和几何失真等影响的问题。 展开更多
关键词 二维条形码 data MATRIX 图像预处理 定位 二值化
在线阅读 下载PDF
基于Data Socket技术的远程振动虚拟测试系统的设计 被引量:2
19
作者 金青 潘雪涛 +1 位作者 申阳 张燕 《工矿自动化》 北大核心 2008年第5期40-43,共4页
针对传统的机械振动测试仪器的不足,文章运用图形化编程语言LabVIEW设计了一种远程振动参数测试及动态特性分析系统,较详细地介绍了系统的基本结构和软件设计。该系统在服务器端采集振动信号,利用Data Socket技术实现数据传输;在客户端... 针对传统的机械振动测试仪器的不足,文章运用图形化编程语言LabVIEW设计了一种远程振动参数测试及动态特性分析系统,较详细地介绍了系统的基本结构和软件设计。该系统在服务器端采集振动信号,利用Data Socket技术实现数据传输;在客户端程序对信号进行实时处理、显示以及频谱分析,对固有频率、阻尼比等参数进行估计。实验结果表明,该系统具有良好的人机界面,计算结果准确,可以满足工业测试的需要。 展开更多
关键词 机械 振动测试 虚拟仪器 data SOCKET LABVIEW
在线阅读 下载PDF
房价影响因素的空间非一致性与差异化调控手段——基于Panel Data模型的实证研究 被引量:7
20
作者 罗孝玲 周琳杰 马世昌 《华东经济管理》 CSSCI 2014年第7期37-41,共5页
房地产价格受多种宏观经济因素的综合影响,不同城市的房价决定因素可能存在差异。文章将全国城市划分为四种级别,并选择17个一、二、三线样本城市,以货币供应量、CPI、GDP、城镇居民家庭人均可支配收入和社会固定资产投资额为解释变量,... 房地产价格受多种宏观经济因素的综合影响,不同城市的房价决定因素可能存在差异。文章将全国城市划分为四种级别,并选择17个一、二、三线样本城市,以货币供应量、CPI、GDP、城镇居民家庭人均可支配收入和社会固定资产投资额为解释变量,选取2002-2012年的季度数据,构建Panel Data模型,研究房价影响因素的空间非一致性,研究结果证明了空间非一致性的存在。基于此,对一、二、三线城市分别提出了差异性调控手段建议。 展开更多
关键词 房地产价格 空间非一致性 PANEL data模型 调控
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部