挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tr...挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.展开更多
云计算为大数据提供了展示和共享的平台.为了防止隐私泄露,这些数据中往往包含人为添加的不确定因素,如何挖掘这些不确定数据是大数据共享亟待解决的问题.在用于共享的大数据中,不确定数据通过对精确数据的泛化处理来实现,具有均匀分布...云计算为大数据提供了展示和共享的平台.为了防止隐私泄露,这些数据中往往包含人为添加的不确定因素,如何挖掘这些不确定数据是大数据共享亟待解决的问题.在用于共享的大数据中,不确定数据通过对精确数据的泛化处理来实现,具有均匀分布特性,这一特性不利于精确查询,但可为关联规则的挖掘提供便利条件.首先,依据泛化值之间可能的相交或包含关系,将泛化值进行分层聚类,为了保存与不确定数据集挖掘相关的重要信息,给出了构建不确定频繁模式树的算法,在此基础上,提出了频繁项集挖掘子算法(data mining algorithm for uncertain frequent item-sets,UFI-DM)和关联规则生成子算法(algorithm for generating association rules,GAR),分别用于挖掘频繁项集和生成关联规则,最后,通过理论分析和实验比对,论证了算法的可行性和有效性.展开更多
文摘挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.
文摘云计算为大数据提供了展示和共享的平台.为了防止隐私泄露,这些数据中往往包含人为添加的不确定因素,如何挖掘这些不确定数据是大数据共享亟待解决的问题.在用于共享的大数据中,不确定数据通过对精确数据的泛化处理来实现,具有均匀分布特性,这一特性不利于精确查询,但可为关联规则的挖掘提供便利条件.首先,依据泛化值之间可能的相交或包含关系,将泛化值进行分层聚类,为了保存与不确定数据集挖掘相关的重要信息,给出了构建不确定频繁模式树的算法,在此基础上,提出了频繁项集挖掘子算法(data mining algorithm for uncertain frequent item-sets,UFI-DM)和关联规则生成子算法(algorithm for generating association rules,GAR),分别用于挖掘频繁项集和生成关联规则,最后,通过理论分析和实验比对,论证了算法的可行性和有效性.