微地震监测是非常规油气藏勘探领域的一项重要技术,在水力压裂裂缝监测、CO_(2)封存等方面都有着广泛的应用。然而,微地震信号能量弱,容易被噪声污染,其信噪比低的特点使得在后续的处理过程中往往不能得到好的结果。因此微地震数据去噪...微地震监测是非常规油气藏勘探领域的一项重要技术,在水力压裂裂缝监测、CO_(2)封存等方面都有着广泛的应用。然而,微地震信号能量弱,容易被噪声污染,其信噪比低的特点使得在后续的处理过程中往往不能得到好的结果。因此微地震数据去噪是一项十分重要的处理步骤,去噪效果对后续震源定位的准确性和震源机制反演结果的可靠性有关键的影响。文中提出一种蒙特卡洛非负字典学习(Monte Carlo non-negative dictionary learning,MCNDL)微地震去噪方法。蒙特卡洛分块能利用少量的时间获得包含相对较多有效信号特征的初始字典,在字典更新的过程中,利用非负性约束来保证数据变换的稀疏性,缩小解的空间,从而降低计算成本并提高去噪精度。利用合成和实际微地震数据对该方法的应用效果进行了测试,并与带通(Band-Pass,BP)滤波、FK滤波和KSVD方法进行对比,展示出该方法针对微地震数据较好的去噪效果与较高的去噪效率。展开更多
随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置...随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。展开更多
文摘微地震监测是非常规油气藏勘探领域的一项重要技术,在水力压裂裂缝监测、CO_(2)封存等方面都有着广泛的应用。然而,微地震信号能量弱,容易被噪声污染,其信噪比低的特点使得在后续的处理过程中往往不能得到好的结果。因此微地震数据去噪是一项十分重要的处理步骤,去噪效果对后续震源定位的准确性和震源机制反演结果的可靠性有关键的影响。文中提出一种蒙特卡洛非负字典学习(Monte Carlo non-negative dictionary learning,MCNDL)微地震去噪方法。蒙特卡洛分块能利用少量的时间获得包含相对较多有效信号特征的初始字典,在字典更新的过程中,利用非负性约束来保证数据变换的稀疏性,缩小解的空间,从而降低计算成本并提高去噪精度。利用合成和实际微地震数据对该方法的应用效果进行了测试,并与带通(Band-Pass,BP)滤波、FK滤波和KSVD方法进行对比,展示出该方法针对微地震数据较好的去噪效果与较高的去噪效率。
文摘随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。