For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all...For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.展开更多
In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every cipherte...In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every ciphertext is specified with an access policy,a decryptor can access the data if and only if his secret key matches with the access policy.However,the FE cannot be directly applied to construct access control scheme due to the exposure of the access policy which may contain sensitive information.In this paper,we deal with the policy privacy issue and present a mechanism named multi-authority vector policy(MAVP) which provides hidden and expressive access policy for FE.Firstly,each access policy is encoded as a matrix and decryptors can only obtain the matched result from the matrix in MAVP.Then,we design a novel function encryption scheme based on the multi-authority spatial policy(MAVPFE),which can support privacy-preserving yet non-monotone access policy.Moreover,we greatly improve the efficiency of encryption and decryption in MAVP-FE by shifting the major computation of clients to the outsourced server.Finally,the security and performance analysis show that our MAVP-FE is secure and efficient in practice.展开更多
With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and eff...With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and efficient transmission.In this paper,we propose a data security storage and sharing scheme based on consortium blockchain,which is a credible search scheme without verification.In our scheme,the implementation of data security storage is using the blockchain and storage server together.In detail,the smart contract provides protection for data keywords,the storage server stores data after data masking,and the blockchain ensures the traceability of query transactions.The need for precise privacy data is achieved by constructing a dictionary.Cryptographic techniques such as AES and RSA are used for encrypted storage of data,keywords,and digital signatures.Security analysis and performance evaluation shows that the availability,high efficiency,and privacy-preserving can be achieved.Meanwhile,this scheme has better robustness compared to other educational records data sharing models.展开更多
To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm...To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm is not static and uniform.For each encryption,this algorithm is adaptively and dynamically selected from the algorithm set in the mobile phone encryption system.From the mobile phone's character,the detail encryption algorithm selection strategy is confirmed based on the user's mobile phone hardware information,personalization information and a pseudo-random number.Secondly,the data is rearranged with a randomly selected start position in the data before being encrypted.The start position's randomness makes the mobile phone data encryption safer.Thirdly,the rearranged data is encrypted by the selected algorithm and generated key.Finally,the analysis shows this method possesses the higher security because the more dynamics and randomness are adaptively added into the encryption process.展开更多
With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large a...With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.展开更多
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urg...Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.展开更多
Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing r...Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing requirements of cloud computing,but also collect and analyze distributed data.However,it inherits many security and privacy challenges of cloud computing,such as:authentication and access control.To address these problem,we proposed a new efficient privacy-preserving aggregation scheme for edge computing.Our scheme consists of two steps.First,we divided the data of the end users with the Simulated Annealing Module Partition(SAMP)algorithm.And then,the end sensors and edge nodes performed respectively differential aggregation mechanism with the Differential Aggregation Encryption(DAE)algorithm which can make noise interference and encryption algorithm with trusted authority(TA).Experiment results show that the DAE can preserve user privacy,and has significantly less computation and communication overhead than existing approaches.展开更多
Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we p...Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.展开更多
A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and d...A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and dynamically analyzed,and implemented on FPGA.Then,a new pseudo-random number generator(PRNG)based on MHNN is proposed.The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator,which effectively ensures the randomness of PRNG.The experiments in this paper comply with the IEEE 754-1985 high precision32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7 Z020 CLG400-2 FPGA chip and the Verilog-HDL hardware programming language.The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis,proving its randomness and high performance.Finally,an image encryption system based on PRNG is proposed and implemented on FPGA,which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things(Io T).展开更多
The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article propose...The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).展开更多
With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in p...With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in privacy protection and data verification,especially for sensitive data.Existing schemes often suffer from inefficiency and high overhead.We propose a privacy protection scheme using BGV homomorphic encryption and Pedersen Secret Sharing.This scheme enables secure computation on encrypted data,with Pedersen sharding and verifying the private key,ensuring data consistency and immutability.The blockchain framework manages key shards,verifies secrets,and aids security auditing.This approach allows for trusted computation without revealing the underlying data.Preliminary results demonstrate the scheme's feasibility in ensuring data privacy and security,making data available but not visible.This study provides an effective solution for data sharing and privacy protection in blockchain applications.展开更多
基金partially supported by the National Natural Science Foundation of China under grant no.62372245the Foundation of Yunnan Key Laboratory of Blockchain Application Technology under Grant 202105AG070005+1 种基金in part by the Foundation of State Key Laboratory of Public Big Datain part by the Foundation of Key Laboratory of Computational Science and Application of Hainan Province under Grant JSKX202202。
文摘For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks.
基金supported by the National Science Foundation of China (No.61373040,No.61173137)The Ph.D.Pro-grams Foundation of Ministry of Education of China(20120141110073)Key Project of Natural Science Foundation of Hubei Province (No.2010CDA004)
文摘In cloud,data access control is a crucial way to ensure data security.Functional encryption(FE) is a novel cryptographic primitive supporting fine-grained access control of encrypted data in cloud.In FE,every ciphertext is specified with an access policy,a decryptor can access the data if and only if his secret key matches with the access policy.However,the FE cannot be directly applied to construct access control scheme due to the exposure of the access policy which may contain sensitive information.In this paper,we deal with the policy privacy issue and present a mechanism named multi-authority vector policy(MAVP) which provides hidden and expressive access policy for FE.Firstly,each access policy is encoded as a matrix and decryptors can only obtain the matched result from the matrix in MAVP.Then,we design a novel function encryption scheme based on the multi-authority spatial policy(MAVPFE),which can support privacy-preserving yet non-monotone access policy.Moreover,we greatly improve the efficiency of encryption and decryption in MAVP-FE by shifting the major computation of clients to the outsourced server.Finally,the security and performance analysis show that our MAVP-FE is secure and efficient in practice.
基金The research work was supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Key Project Plan of Blockchain in Ministry of Education of the People’s Republic of China(Grant No.2020KJ010802)Natural Science Foundation of Beijing Municipality(Grant No.M21034).
文摘With the in-depth application of new technologies such as big data in education fields,the storage and sharing model of student education records data still faces many challenges in terms of privacy protection and efficient transmission.In this paper,we propose a data security storage and sharing scheme based on consortium blockchain,which is a credible search scheme without verification.In our scheme,the implementation of data security storage is using the blockchain and storage server together.In detail,the smart contract provides protection for data keywords,the storage server stores data after data masking,and the blockchain ensures the traceability of query transactions.The need for precise privacy data is achieved by constructing a dictionary.Cryptographic techniques such as AES and RSA are used for encrypted storage of data,keywords,and digital signatures.Security analysis and performance evaluation shows that the availability,high efficiency,and privacy-preserving can be achieved.Meanwhile,this scheme has better robustness compared to other educational records data sharing models.
文摘To enhance the security of user data in the clouds,we present an adaptive and dynamic data encryption method to encrypt user data in the mobile phone before it is uploaded.Firstly,the adopted data encryption algorithm is not static and uniform.For each encryption,this algorithm is adaptively and dynamically selected from the algorithm set in the mobile phone encryption system.From the mobile phone's character,the detail encryption algorithm selection strategy is confirmed based on the user's mobile phone hardware information,personalization information and a pseudo-random number.Secondly,the data is rearranged with a randomly selected start position in the data before being encrypted.The start position's randomness makes the mobile phone data encryption safer.Thirdly,the rearranged data is encrypted by the selected algorithm and generated key.Finally,the analysis shows this method possesses the higher security because the more dynamics and randomness are adaptively added into the encryption process.
基金Project supported by the International Collaborative Research Project of Qilu University of Technology (Grant No.QLUTGJHZ2018020)the Project of Youth Innovation and Technology Support Plan for Colleges and Universities in Shandong Province,China (Grant No.2021KJ025)the Major Scientific and Technological Innovation Projects of Shandong Province,China (Grant Nos.2019JZZY010731 and 2020CXGC010901)。
文摘With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
基金supported by the National 863 Project of China under Grant No.2012AA01A509,No.2012AA120800
文摘Due to the ubiquitous open air links and complex electromagnetic environment in the satellite communications,how to ensure the security and reliability of the information through the satellite communications is an urgent problem.This paper combines the AES(Advanced Encryption Standard) with LDPC(Low Density Parity Check Code) to design a secure and reliable error correction method — SEEC(Satellite Encryption and Error Correction).This method selects the LDPC codes,which is suitable for satellite communications,and uses the AES round key to control the encoding process,at the same time,proposes a new algorithm of round key generation.Based on a fairly good property in error correction in satellite communications,the method improves the security of the system,achieves a shorter key size,and then makes the key management easier.Eventually,the method shows a great error correction capability and encryption effect by the MATLAB simulation.
基金supported by the National Natural Science Foundation of China(61672321,61771289,and 61832012)the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+6 种基金Shandong province key research and development plan(2019GGX101050)Shandong provincial Graduate Education Innovation Program(SDYY14052 and SDYY15049)Qufu Normal University Science and Technology Project(xkj201525)Shandong province agricultural machinery equipment research and development innovation project(2018YZ002)Qufu Normal University graduate degree thesis research innovation funding project(LWCXS201935)Shandong Provincial Specialized Degree Postgraduate Teaching Case Library Construction ProgramShandong Provincial Postgraduate Education Quality Curriculum Construction Program。
文摘Edge computing is a highly virtualized paradigm that can services the Internet of Things(Io T)devices more efficiently.It is a non-trivial extension of cloud computing,which can not only meet the big data processing requirements of cloud computing,but also collect and analyze distributed data.However,it inherits many security and privacy challenges of cloud computing,such as:authentication and access control.To address these problem,we proposed a new efficient privacy-preserving aggregation scheme for edge computing.Our scheme consists of two steps.First,we divided the data of the end users with the Simulated Annealing Module Partition(SAMP)algorithm.And then,the end sensors and edge nodes performed respectively differential aggregation mechanism with the Differential Aggregation Encryption(DAE)algorithm which can make noise interference and encryption algorithm with trusted authority(TA).Experiment results show that the DAE can preserve user privacy,and has significantly less computation and communication overhead than existing approaches.
基金This work has been supported by the National Natural Science Foundation of China under Grant No.61272519,the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120005110017,and the National Key Technology R&D Program under Grant No.2012BAH06B02
文摘Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(Grant No.21B0345)the Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology(Grant Nos.CX2021SS69 and CX2021SS72)+3 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20200884)the Natural Science Foundation of Hunan Province,China(Grant Nos.2019JJ50648,2020JJ4622,and 2020JJ4221)the National Natural Science Foundation of China(Grant No.62172058)the Special Funds for the Construction of Innovative Provinces of Hunan Province,China(Grant Nos.2020JK4046 and 2022SK2007)。
文摘A memristive Hopfield neural network(MHNN)with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network(HNN)with a special activation gradient.The MHNN is simulated and dynamically analyzed,and implemented on FPGA.Then,a new pseudo-random number generator(PRNG)based on MHNN is proposed.The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator,which effectively ensures the randomness of PRNG.The experiments in this paper comply with the IEEE 754-1985 high precision32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7 Z020 CLG400-2 FPGA chip and the Verilog-HDL hardware programming language.The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis,proving its randomness and high performance.Finally,an image encryption system based on PRNG is proposed and implemented on FPGA,which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things(Io T).
基金supported by the National Natural Science Foundation of China(Grant No.61973037)and(Grant No.61871414)Postdoctoral Fundation of China(Grant No.2022M720419)。
文摘The interrupted-sampling repeater jamming(ISRJ)can cause false targets to the radio-frequency proximity sensors(RFPSs),resulting in a serious decline in the target detection capability of the RFPS.This article proposes a recognition method for RFPSs to identify the false targets caused by ISRJ.The proposed method is realized by assigning a unique identity(ID)to each RFPS,and each ID is a periodically and chaotically encrypted in every pulse period.The processing technique of the received signal is divided into ranging and ID decryption.In the ranging part,a high-resolution range profile(HRRP)can be obtained by performing pulse compression with the binary chaotic sequences.To suppress the noise,the singular value decomposition(SVD)is applied in the preprocessing.Regarding ID decryption,targets and ISRJ can be recognized through the encryption and decryption processes,which are controlled by random keys.An adaptability analysis conducted in terms of the peak-to-side lobe ratio(PSLR)and bit error rate(BER)indicates that the proposed method performs well within a 70-k Hz Doppler shift.A simulation and experimental results show that the proposed method achieves extremely stable target and ISRJ recognition accuracies at different signal-to-noise ratios(SNRs)and jamming-to-signal ratios(JSRs).
基金supported by the National Key Research and Development Plan in China(Grant No.2020YFB1005500)。
文摘With increasing demand for data circulation,ensuring data security and privacy is paramount,specifically protecting privacy while maximizing utility.Blockchain,while decentralized and transparent,faces challenges in privacy protection and data verification,especially for sensitive data.Existing schemes often suffer from inefficiency and high overhead.We propose a privacy protection scheme using BGV homomorphic encryption and Pedersen Secret Sharing.This scheme enables secure computation on encrypted data,with Pedersen sharding and verifying the private key,ensuring data consistency and immutability.The blockchain framework manages key shards,verifies secrets,and aids security auditing.This approach allows for trusted computation without revealing the underlying data.Preliminary results demonstrate the scheme's feasibility in ensuring data privacy and security,making data available but not visible.This study provides an effective solution for data sharing and privacy protection in blockchain applications.