安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不...安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不确定性、多时间尺度与多元约束条件5个方面梳理了物理模型驱动的SCUC的研究进展,并分析了此类方法所面临的挑战。同时,重点总结归纳了现有基于人工智能技术和数据驱动的SCUC问题的研究成果,并分析了不同类型方法的特点、优势和缺陷。最后提出了对未来基于数据驱动的SCUC研究方向的相关思考。展开更多
针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习...针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习,使其稀疏地表示,再根据地震道的缺失情况设计合理的采样矩阵,最后对建立的L1范数约束模型采用ADMM进行求解得到重建后的地震数据。建立了压缩感知下基于字典学习和ADMM的地震数据插值技术流程。正演模拟数据和实际数据的重建实验结果表明:与压缩感知理论下采用固定基的重建方法相比,字典学习能够自适应地对地震数据进行更优的稀疏表示。与常用的curvelet等重建算法相比,采用ADMM能够更加精确地重建地震数据。与固定基和正交匹配追踪(orthogonal matching pursuit,OMP)相比,在压缩感知理论下采用字典学习和ADMM重建的地震数据有更高的信噪比。展开更多
文摘安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不确定性、多时间尺度与多元约束条件5个方面梳理了物理模型驱动的SCUC的研究进展,并分析了此类方法所面临的挑战。同时,重点总结归纳了现有基于人工智能技术和数据驱动的SCUC问题的研究成果,并分析了不同类型方法的特点、优势和缺陷。最后提出了对未来基于数据驱动的SCUC研究方向的相关思考。
文摘针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习,使其稀疏地表示,再根据地震道的缺失情况设计合理的采样矩阵,最后对建立的L1范数约束模型采用ADMM进行求解得到重建后的地震数据。建立了压缩感知下基于字典学习和ADMM的地震数据插值技术流程。正演模拟数据和实际数据的重建实验结果表明:与压缩感知理论下采用固定基的重建方法相比,字典学习能够自适应地对地震数据进行更优的稀疏表示。与常用的curvelet等重建算法相比,采用ADMM能够更加精确地重建地震数据。与固定基和正交匹配追踪(orthogonal matching pursuit,OMP)相比,在压缩感知理论下采用字典学习和ADMM重建的地震数据有更高的信噪比。