Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
The industrial supply chain networks basically capture the circulation of social resource, dominating the stability and efficiency of the industrial system. In this paper, we provide an empirical study of the topology...The industrial supply chain networks basically capture the circulation of social resource, dominating the stability and efficiency of the industrial system. In this paper, we provide an empirical study of the topology of smartphone supply chain network. The supply chain network is constructed using open online data. Our experimental results show that the smartphone supply chain network has small-world feature with scale-free degree distribution, in which a few high degree nodes play a key role in the function and can effectively reduce the communication cost. We also detect the community structure to find the basic functional unit. It shows that information communication between nodes is crucial to improve the resource utilization. We should pay attention to the global resource configuration for such electronic production management.展开更多
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11547040 and 61703281)Guangdong Province Natural Science Foundation,China(Grant Nos.2016A030310051 and 2015KONCX143)+4 种基金Shenzhen Fundamental Research Foundation,China(Grant Nos.JCYJ20150625101524056 and JCYJ20160520162743717)SZU Student Innovation Fund,China,the PhD Start-up Fund of Natural Science Foundation of Guangdong Province,China(Grant No.2017A030310374)the Young Teachers Start-up Fund of Natural Science Foundation of Shenzhen University,Chinathe Natural Science Foundation of SZU,China(Grant No.2016-24)the Singapore Ministry of Education Academic Research Fund Tier 2(Grant No.MOE 2013-T2-2-033)
文摘The industrial supply chain networks basically capture the circulation of social resource, dominating the stability and efficiency of the industrial system. In this paper, we provide an empirical study of the topology of smartphone supply chain network. The supply chain network is constructed using open online data. Our experimental results show that the smartphone supply chain network has small-world feature with scale-free degree distribution, in which a few high degree nodes play a key role in the function and can effectively reduce the communication cost. We also detect the community structure to find the basic functional unit. It shows that information communication between nodes is crucial to improve the resource utilization. We should pay attention to the global resource configuration for such electronic production management.