Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise source...Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise sources in torpedo,the application of damping treatment for noise and vibration absorption was proposed in this paper.Compared composite materials(damping and metal materials)used as segment joint,their different contributions to the damping performance of base structure were investigated.The results show that the damping material can be used as segment joint effectively in vibration control.Taking cantilever beam as an example,four different damping treatments were compared in natural frequency and damping loss factor,the results show the influences of different damping layer layouts on the structure damping performance,and offer a reference for the torpedo shell design.展开更多
The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the o...The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction of damping material. The optimal placement is found. Several examples are presented for verification. The results demonstrate that the method based on ESO is effective in solving the topology optimization of the structure with unconstrained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.展开更多
The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by di...The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by different heat-treatment conditions. The results show that the area enclosed by hysteresis loop of the CuZnAl shape memory alloy in martensitic state is much larger than that of the alloy in austenitic state with super-elasticity at room temperature. Therefore, the former has better vibration attenuation effect. After being oil-quenched, water-quenched, and step-quenched, the CuZnAl alloy takes on more stable shape memory effect,better super-plasticity and superelasticity (pseudoelasticity). A CuZnAl shape memory alloy damper was designed, produced and installed to a 2-layer frame structure. In addition, the vibration experiments were made by dynamic data collecting analysis meter. The velocity of vibration attenuation of frame structure with CuZnAl shape memory alloy damper is much faster than that without it. And with the help of CuZnAl shape memory alloy damper, the attenuation period reduces to 1/10 of the original.展开更多
The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforce...The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.展开更多
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre...Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.展开更多
文摘Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise sources in torpedo,the application of damping treatment for noise and vibration absorption was proposed in this paper.Compared composite materials(damping and metal materials)used as segment joint,their different contributions to the damping performance of base structure were investigated.The results show that the damping material can be used as segment joint effectively in vibration control.Taking cantilever beam as an example,four different damping treatments were compared in natural frequency and damping loss factor,the results show the influences of different damping layer layouts on the structure damping performance,and offer a reference for the torpedo shell design.
基金Science and Technology Foundation of China Academy of Engineering Physics (20060321)
文摘The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction of damping material. The optimal placement is found. Several examples are presented for verification. The results demonstrate that the method based on ESO is effective in solving the topology optimization of the structure with unconstrained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.
文摘The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by different heat-treatment conditions. The results show that the area enclosed by hysteresis loop of the CuZnAl shape memory alloy in martensitic state is much larger than that of the alloy in austenitic state with super-elasticity at room temperature. Therefore, the former has better vibration attenuation effect. After being oil-quenched, water-quenched, and step-quenched, the CuZnAl alloy takes on more stable shape memory effect,better super-plasticity and superelasticity (pseudoelasticity). A CuZnAl shape memory alloy damper was designed, produced and installed to a 2-layer frame structure. In addition, the vibration experiments were made by dynamic data collecting analysis meter. The velocity of vibration attenuation of frame structure with CuZnAl shape memory alloy damper is much faster than that without it. And with the help of CuZnAl shape memory alloy damper, the attenuation period reduces to 1/10 of the original.
基金Project(50678064) supported by the National Natural Science Foundation of China
文摘The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.
基金National Natural Science Foundation of China(Grant No.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01)。
文摘Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.