期刊文献+
共找到922篇文章
< 1 2 47 >
每页显示 20 50 100
Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
1
作者 Pengxin Wang Heyu Ma +3 位作者 Tianyu Liu Chengcheng Liu Dan Li Dean Ta 《Chinese Physics B》 2025年第4期442-455,共14页
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process... Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging. 展开更多
关键词 ultrasound image physics informed generative adversarial network musculoskeletal imaging
在线阅读 下载PDF
SC-GAN:A Spectrum Cartography with Satellite Internet Based on Pix2Pix Generative Adversarial Network
2
作者 Zhen Pan Zhang Bangning +2 位作者 Wang Heng MaWenfeng Guo Daoxing 《China Communications》 2025年第2期47-61,共15页
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m... The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods. 展开更多
关键词 electromagnetic situation Pix2Pix generative adversarial network radio map satellite internet spectrum cartography
在线阅读 下载PDF
Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
3
作者 赵润盛 马鸿洋 +2 位作者 程涛 王爽 范兴奎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期285-295,共11页
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS... Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models. 展开更多
关键词 readout errors quantum generative adversarial networks bit-flip averaging method fault tolerant mechanisms
在线阅读 下载PDF
Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
4
作者 程晓昱 解晨雪 +6 位作者 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期112-117,共6页
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b... Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices. 展开更多
关键词 two-dimensional materials deep learning data augmentation generating adversarial networks
在线阅读 下载PDF
Multi-distortion suppression for neutron radiographic images based on generative adversarial network
5
作者 Cheng-Bo Meng Wang-Wei Zhu +4 位作者 Zhen Zhang Zi-Tong Wang Chen-Yi Zhao Shuang Qiao Tian Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期176-188,共13页
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the result... Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace,military,and nuclear industries.However,because of the physical limitations of neutron sources and collimators,the resulting neutron radiographic images inevitably exhibit multiple distortions,including noise,geometric unsharpness,and white spots.Furthermore,these distortions are particularly significant in compact neutron radiography systems with low neutron fluxes.Therefore,in this study,we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve the quality of degraded neutron radiographic images.Real neutron radiographic image datasets with various types and levels of distortion were built for the first time as multi-distortion suppression datasets.Thereafter,the coordinate attention mechanism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract relationship between ideally clear and degraded images.Extensive experiments were performed;the results show that the proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-theart perceptual visual quality,thus demonstrating its application potential in neutron radiography. 展开更多
关键词 Neutron radiography Multi-distortion suppression generative adversarial network Coordinate attention mechanism
在线阅读 下载PDF
Covert LEO Satellite Communication Aided by Generative Adversarial Network Based Cooperative UAV Jamming
6
作者 Shi Jia Li Xiaomeng +2 位作者 Liao Xiaomin Tie Zhuangzhuang Hu Junfan 《China Communications》 SCIE CSCD 2024年第9期27-39,共13页
In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LE... In this paper,we study the covert performance of the downlink low earth orbit(LEO)satellite communication,where the unmanned aerial vehicle(UAV)is employed as a cooperative jammer.To maximize the covert rate of the LEO satellite transmission,a multi-objective problem is formulated to jointly optimize the UAV’s jamming power and trajectory.For practical consideration,we assume that the UAV can only have partial environmental information,and can’t know the detection threshold and exact location of the eavesdropper on the ground.To solve the multiobjective problem,we propose the data-driven generative adversarial network(DD-GAN)based method to optimize the power and trajectory of the UAV,in which the sample data is collected by using genetic algorithm(GA).Simulation results show that the jamming solution of UAV generated by DD-GAN can achieve an effective trade-off between covert rate and probability of detection errors when only limited prior information is obtained. 展开更多
关键词 covert communication generative adversarial network LEO satellite UAV jammer
在线阅读 下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:21
7
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 GEOLOGICAL FACIES Geomodeling Data conditioning generative adversarial networks
在线阅读 下载PDF
Generative Adversarial Networks Based Digital Twin Channel Modeling for Intelligent Communication Networks 被引量:4
8
作者 Yuxin Zhang Ruisi He +5 位作者 Bo Ai Mi Yang Ruifeng Chen Chenlong Wang Zhengyu Zhang Zhangdui Zhong 《China Communications》 SCIE CSCD 2023年第8期32-43,共12页
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D... Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking. 展开更多
关键词 digital twin channel modeling generative adversarial networks intelligent communication networking
在线阅读 下载PDF
Ballistic response of armour plates using Generative Adversarial Networks 被引量:1
9
作者 S.Thompson F.Teixeira-Dias +1 位作者 M.Paulino A.Hamilton 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1513-1522,共10页
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba... It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process. 展开更多
关键词 Machine learning generative adversarial networks GAN Terminal ballistics Armour systems
在线阅读 下载PDF
Exploration of the Relation between Input Noise and Generated Image in Generative Adversarial Networks
10
作者 Hao-He Liu Si-Qi Yao +1 位作者 Cheng-Ying Yang Yu-Lin Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期70-80,共11页
In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution ... In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network. 展开更多
关键词 Deep convolution generative adversarial network(DCGAN) deep learning guided generative adversarial network(GAN) visualization
在线阅读 下载PDF
Cross-Band Spectrum Prediction Algorithm Based on Data Conversion Using Generative Adversarial Networks
11
作者 Chuang Peng Rangang Zhu +1 位作者 Mengbo Zhang Lunwen Wang 《China Communications》 SCIE CSCD 2023年第10期136-152,共17页
Spectrum prediction is one of the new techniques in cognitive radio that predicts changes in the spectrum state and plays a crucial role in improving spectrum sensing performance.Prediction models previously trained i... Spectrum prediction is one of the new techniques in cognitive radio that predicts changes in the spectrum state and plays a crucial role in improving spectrum sensing performance.Prediction models previously trained in the source band tend to perform poorly in the new target band because of changes in the channel.In addition,cognitive radio devices require dynamic spectrum access,which means that the time to retrain the model in the new band is minimal.To increase the amount of data in the target band,we use the GAN to convert the data of source band into target band.First,we analyze the data differences between bands and calculate FID scores to identify the available bands with the slightest difference from the target predicted band.The original GAN structure is unsuitable for converting spectrum data,and we propose the spectrum data conversion GAN(SDC-GAN).The generator module consists of a convolutional network and an LSTM module that can integrate multiple features of the data and can convert data from the source band to the target band.Finally,we use the generated target band data to train the prediction model.The experimental results validate the effectiveness of the proposed algorithm. 展开更多
关键词 cognitive radio cross-band spectrum prediction deep learning generative adversarial network
在线阅读 下载PDF
Evolution and Effectiveness of Loss Functions in Generative Adversarial Networks
12
作者 Ali Syed Saqlain Fang Fang +2 位作者 Tanvir Ahmad Liyun Wang Zain-ul Abidin 《China Communications》 SCIE CSCD 2021年第10期45-76,共32页
Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss... Recently,the evolution of Generative Adversarial Networks(GANs)has embarked on a journey of revolutionizing the field of artificial and computational intelligence.To improve the generating ability of GANs,various loss functions are introduced to measure the degree of similarity between the samples generated by the generator and the real data samples,and the effectiveness of the loss functions in improving the generating ability of GANs.In this paper,we present a detailed survey for the loss functions used in GANs,and provide a critical analysis on the pros and cons of these loss functions.First,the basic theory of GANs along with the training mechanism are introduced.Then,the most commonly used loss functions in GANs are introduced and analyzed.Third,the experimental analyses and comparison of these loss functions are presented in different GAN architectures.Finally,several suggestions on choosing suitable loss functions for image synthesis tasks are given. 展开更多
关键词 loss functions deep learning machine learning unsupervised learning generative adversarial networks(GANs) image synthesis
在线阅读 下载PDF
Generative Adversarial Network-Based Electromagnetic Signal Classification: A Semi- Supervised Learning Framework 被引量:10
13
作者 Huaji Zhou Licheng Jiao +3 位作者 Shilian Zheng Lifeng Yang Weiguo Shen Xiaoniu Yang 《China Communications》 SCIE CSCD 2020年第10期157-169,共13页
Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samp... Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies. 展开更多
关键词 generative adversarial network semi-supervised learning electromagnetic signal classification end-to-end classification weighted loss function
在线阅读 下载PDF
Research on extraction and reproduction of deformation camouflage spot based on generative adversarial network model 被引量:5
14
作者 Xin Yang Wei-dong Xu +4 位作者 Qi Jia Ling Li Wan-nian Zhu Ji-yao Tian Hao Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期555-563,共9页
The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative ad... The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation. 展开更多
关键词 Deformation camouflage generative adversarial network Spot feature Shape description
在线阅读 下载PDF
Robust Image Watermarking Based on Generative Adversarial Network 被引量:2
15
作者 Kangli Hao Guorui Feng Xinpeng Zhang 《China Communications》 SCIE CSCD 2020年第11期131-140,共10页
Digital watermark embeds information bits into digital cover such as images and videos to prove the creator’s ownership of his work.In this paper,we propose a robust image watermark algorithm based on a generative ad... Digital watermark embeds information bits into digital cover such as images and videos to prove the creator’s ownership of his work.In this paper,we propose a robust image watermark algorithm based on a generative adversarial network.This model includes two modules,generator and adversary.Generator is mainly used to generate images embedded with watermark,and decode the image damaged by noise to obtain the watermark.Adversary is used to discriminate whether the image is embedded with watermark and damage the image by noise.Based on the model Hidden(hiding data with deep networks),we add a high-pass filter in front of the discriminator,making the watermark tend to be embedded in the mid-frequency region of the image.Since the human visual system pays more attention to the central area of the image,we give a higher weight to the image center region,and a lower weight to the edge region when calculating the loss between cover and embedded image.The watermarked image obtained by this scheme has a better visual performance.Experimental results show that the proposed architecture is more robust against noise interference compared with the state-of-art schemes. 展开更多
关键词 robust image watermark deep learning generative adversarial network convolutional neural network
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
16
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
Visual-simulation region proposal and generative adversarial network based ground military target recognition 被引量:1
17
作者 Fan-jie Meng Yong-qiang Li +2 位作者 Fa-ming Shao Gai-hong Yuan Ju-ying Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2083-2096,共14页
Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper,... Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect. 展开更多
关键词 Deep learning Biological vision Military application Region proposal network Gabor filter generative adversarial network
在线阅读 下载PDF
Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
18
作者 李玉格 段德洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期433-437,共5页
Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog ... Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog and how to obtain a high-quality defogging ghost image. We show theoretically and experimentally that the photon number fluctuations introduced by fluctuating fog is the reason for ghost image degradation. An algorithm is proposed to process the signals collected by the computational ghost imaging device to eliminate photon number fluctuations of different measurement events. Thus, a high-quality defogging ghost image is reconstructed even though fog is evenly distributed on the optical path. A nearly 100% defogging ghost image is obtained by further using a cycle generative adversarial network to process the reconstructed defogging image. 展开更多
关键词 computational ghost imaging image defogging photon number fluctuation cycle generative adversarial network
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder
19
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder generative adversarial networks Integrated learning
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
20
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement generative adversarial network Multi-scale feature extraction Residual dense block
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部