期刊文献+
共找到2,180篇文章
< 1 2 109 >
每页显示 20 50 100
Research on extraction and reproduction of deformation camouflage spot based on generative adversarial network model 被引量:5
1
作者 Xin Yang Wei-dong Xu +4 位作者 Qi Jia Ling Li Wan-nian Zhu Ji-yao Tian Hao Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期555-563,共9页
The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative ad... The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation. 展开更多
关键词 Deformation camouflage generative adversarial network Spot feature Shape description
在线阅读 下载PDF
Visual-simulation region proposal and generative adversarial network based ground military target recognition 被引量:1
2
作者 Fan-jie Meng Yong-qiang Li +2 位作者 Fa-ming Shao Gai-hong Yuan Ju-ying Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2083-2096,共14页
Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper,... Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect. 展开更多
关键词 Deep learning Biological vision Military application Region proposal network Gabor filter generative adversarial network
在线阅读 下载PDF
Ballistic response of armour plates using Generative Adversarial Networks 被引量:1
3
作者 S.Thompson F.Teixeira-Dias +1 位作者 M.Paulino A.Hamilton 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1513-1522,共10页
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba... It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process. 展开更多
关键词 Machine learning generative adversarial networks GAN Terminal ballistics Armour systems
在线阅读 下载PDF
Distributed spatio-temporal generative adversarial networks
4
作者 QIN Chao GAO Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期578-592,共15页
Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,thi... Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,this paper designs a distributed spatio-temporal generative adversarial network(STGAN-D)that,given some initial data and random noise,generates a consecutive sequence of spatio-temporal samples which have a logical relationship.This paper builds a spatio-temporal discriminator to distinguish whether the samples generated by the generator meet the requirements for time and space coherence,and builds a controller for distributed training of the network gradient updated to separate the model training and parameter updating,to improve the network training rate.The model is trained on the skeletal dataset and the traffic dataset.In contrast to traditional generative adversarial networks(GANs),the proposed STGAN-D can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition,this paper shows that the proposed model can generate different styles of spatio-temporal samples given different random noise inputs,and the controller can improve the network training rate.This model will extend the potential range of applications of GANs to areas such as traffic information simulation and multiagent adversarial simulation. 展开更多
关键词 distributed spatio-temporal generative adversarial network(STGAN-D) spatial discriminator temporal discriminator speed controller
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
5
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder generative adversarial networks Integrated learning
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
6
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement generative adversarial network Multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
7
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
在线阅读 下载PDF
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
8
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 Deep learning Military application Targets stealth network Mask generation generative adversarial network
在线阅读 下载PDF
基于GAN和多尺度空间注意力的多模态医学图像融合 被引量:3
9
作者 林予松 李孟娅 +1 位作者 李英豪 赵哲 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期1-8,共8页
针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图... 针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图像;其次,整个对抗网络框架采用双鉴别器结构,使得生成器生成的融合图像同时保留多个模态图像的显著特征;最后,构建一种多尺度空间注意力作为编码器进行特征提取的基本模块,利用多尺度结构充分捕获并保留源图像的多尺度特征,并且引入空间注意力更好地保留源图像的结构和细节信息。全脑图谱数据库上的实验结果表明:所提算法生成的融合图像不仅纹理细节更为丰富,有助于人类视觉观察,而且在3种不同类型的医学图像融合任务上平均梯度、峰值信噪比、互信息、视觉信息保真度等客观评价指标的平均值分别达到0.3023、20.7207、1.4414、0.6498,与其他先进的算法相比具有一定的优势。 展开更多
关键词 图像融合 多模态医学图像 生成对抗网络 特征金字塔 注意力机制
在线阅读 下载PDF
基于边缘提取和增强的遥感图像超分辨率网络 被引量:2
10
作者 余翔 丁彦文 杨路 《激光杂志》 北大核心 2025年第2期115-123,共9页
针对遥感图像分辨率低于传统图像且受到复杂退化过程的影响,传统生成对抗网络会生成不真实的特征,导致出现伪影和大量虚假、尖锐的边缘等问题。提出了一种基于边缘提取和增强的遥感图像超分辨率网络EEEGAN。该网络首先采用了边缘提取算... 针对遥感图像分辨率低于传统图像且受到复杂退化过程的影响,传统生成对抗网络会生成不真实的特征,导致出现伪影和大量虚假、尖锐的边缘等问题。提出了一种基于边缘提取和增强的遥感图像超分辨率网络EEEGAN。该网络首先采用了边缘提取算法TEED以提取图像边缘。其次设计了双重注意力机制TAM以获取图像丰富的空间和通道信息。同时提出了一种基本块RRDJB以扩大模型的处理能力,并引入下采样网络SPD进一步减少细节损失。在RSOD数据集的基础上,根据退化模型对数据集进行了不同的数据退化处理。结果表明文中所提出的模型,在不同的退化条件下,与目前的主流图像超分辨率模型相比,指标均有所提升。文中的方法相对于真实增强图像超分辨率对抗网络在退化条件I的样本上SSIM提升了0.034,PSNR提升了1.329 8 dB。图像在重建后,边缘细节的视觉效果更好。并且,在DIOR和HRSC2016数据集上均取得了良好的泛化效果。 展开更多
关键词 超分辨率 遥感图像 边缘提取 注意力机制 生成对抗网络
在线阅读 下载PDF
含降雨量修正的台风灾害下输电杆塔数据机理联合故障概率预测 被引量:1
11
作者 侯慧 徐海峰 +3 位作者 王少华 谷山强 王振国 苏杰 《高电压技术》 北大核心 2025年第4期1654-1662,共9页
针对以往研究往往侧重台风或暴雨等单一灾害下的输电杆塔故障,忽视了台风灾害携带暴雨共同威胁输电杆塔安全。为此建立含降雨量修正的台风灾害下输电杆塔数据机理联合故障概率预测模型,以准确预测台风与暴雨复合作用下输电杆塔故障概率... 针对以往研究往往侧重台风或暴雨等单一灾害下的输电杆塔故障,忽视了台风灾害携带暴雨共同威胁输电杆塔安全。为此建立含降雨量修正的台风灾害下输电杆塔数据机理联合故障概率预测模型,以准确预测台风与暴雨复合作用下输电杆塔故障概率。首先,在数据驱动部分,通过生成对抗网络(generative adversarial network,GAN)解决数据量不足、数据信息不均衡等问题,并以支持向量回归、岭回归、随机森林、K近邻、极端随机树及自适应提升算法等6种机器学习算法预测输电杆塔故障概率。其次,在机理驱动部分,考虑降雨量对输电杆塔的影响,通过降雨雨压模型,计算降雨修正系数修正输电杆塔的故障概率。最后,以2022年登陆浙江省舟山市的台风“梅花”为例进行仿真验证,算例表明所提模型与实际情况更为相符,可精准地预测输电杆塔故障概率。 展开更多
关键词 台风灾害 降雨 输电杆塔 机器学习 生成对抗网络 故障概率预测
在线阅读 下载PDF
深圳土工参数数据库及基于生成对抗网络的多元参数分布预测模型研究 被引量:1
12
作者 潘秋景 孙广灿 +2 位作者 蔡永敏 苏栋 李凤伟 《岩土力学》 北大核心 2025年第2期563-572,共10页
借鉴大数据思想,充分利用岩土工程勘察数据,实现岩土参数精细化表征和建模,是岩土工程数字孪生的重要组成部分。通过收集深圳市75个工程项目的岩土工程勘察报告,建立了深圳黏性土及风化残积土8个土工试验参数数据库SZ-SOIL/8/11369,分... 借鉴大数据思想,充分利用岩土工程勘察数据,实现岩土参数精细化表征和建模,是岩土工程数字孪生的重要组成部分。通过收集深圳市75个工程项目的岩土工程勘察报告,建立了深圳黏性土及风化残积土8个土工试验参数数据库SZ-SOIL/8/11369,分析了深圳黏性土及风化残积土土工试验参数的分布特征和规律。进一步利用该数据库,提出了基于生成对抗网络(generative adversarial network,简称GAN)的土工试验物理力学参数概率分布及预测模型,并将提出的方法应用于深圳某项目,针对单组土工试验样本利用物理参数成功预测了其力学参数,并利用少量样本正确预测了该工程场地的土工试验参数的分布。结果表明,所提方法能够对缺失参数样本进行合理预测,并实现了通过大范围地区勘察数据降低局部工程场地岩土参数不确定性的目的,可为深圳岩土与地下工程结构韧性设计和风险评价提供参数保障。 展开更多
关键词 土工参数分布 数据库 预测 生成对抗网络
在线阅读 下载PDF
基于改进型生成对抗网络的矿井图像超分辨重建方法研究 被引量:1
13
作者 张帆 刘莹 +2 位作者 宋惠 张嘉荣 程海星 《煤炭科学技术》 北大核心 2025年第S1期338-345,共8页
智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下... 智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下环境噪声影响,模型训练的稳定性较差,难以获得矿井图像的重建高频信息,导致图像重构质量欠佳,易出现矿井图像模糊和分辨率下降等问题。针对上述问题,提出一种基于生成对抗网络的矿井图像超分辨率重建方法。该方法基于SRGAN网络,对网络结构和损失函数进行改进优化,在生成器的浅层特征提取层和重建层分别采用2个5×5的卷积层,并在浅层特征提取层的每个卷积层后加入非线性激活函数,深层特征提取层采用残差结构,通过级联亚像素卷积层以实现矿井图像不同倍数的超分辨重建;采用Wasserstein距离对损失函数进行改进,并去掉判别器输出层的Sigmoid,使用RMSProp方法对网络进行优化,提高模型训练的收敛速度和稳定性;利用训练好的生成器模型,据此分别对矿井图像进行2倍和4倍超分辨重建,并对实验结果进行主观视觉分析和客观评价。结果表明,与传统的双三次插值、SRCNN、SRGAN相比,在相同缩放因子条件下,所提方法的峰值信噪比分别提升了2.68、1.50和1.59 dB,结构相似性分别提升了0.033 4、0.004 8和0.006 1,所提方法能够重建出清晰的矿井图像纹理和细节信息,在主观视觉上以及峰值信噪比和结构相似性上都实现了更好的重建效果,且整体性能优于其他几种方法,有效提高了矿井图像的分辨率。 展开更多
关键词 煤矿智能化 矿井图像 超分辨重建 生成对抗网络 SRGAN
在线阅读 下载PDF
基于条件生成对抗网络与迁移学习的暂态电压稳定超前判别 被引量:2
14
作者 王渝红 何其多 +5 位作者 郑宗生 周旭 马欢 程定一 赵康 周辰予 《电力自动化设备》 北大核心 2025年第2期159-166,共8页
为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决... 为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决样本不平衡问题,从而提升暂态电压稳定判别准确性;考虑到CGAN生成器与暂态电压时序预测模型具有相似的学习任务,将CGAN生成器模型迁移至暂态电压时序预测模型,结合工程判据实现暂态电压稳定超前判别,并进一步提升暂态电压稳定判别准确性。在CEPRI-VC暂态电压稳定分析系统中验证了所提方法的有效性。 展开更多
关键词 暂态电压稳定 稳定超前判别 迁移学习 条件生成对抗网络 数据生成
在线阅读 下载PDF
基于SE-AdvGAN的图像对抗样本生成方法研究 被引量:1
15
作者 赵宏 宋馥荣 李文改 《计算机工程》 北大核心 2025年第2期300-311,共12页
对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。... 对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。为解决这一问题,基于AdvGAN提出一种改进的图像对抗样本生成方法(SE-AdvGAN)。SE-AdvGAN通过构造SE注意力生成器和SE残差判别器来提高扰动的稀疏性。SE注意力生成器用于提取图像关键特征,限制扰动生成位置,SE残差判别器指导生成器避免生成无关扰动。同时,在SE注意力生成器的损失函数中加入以l_(2)范数为基准的边界损失以限制扰动的幅度,从而提高对抗样本的真实性。实验结果表明,在白盒攻击场景下,SE-AdvGAN相较于现有方法生成的对抗样本扰动稀疏性更高、幅度更小,并且在不同目标模型上均取得了更好的攻击效果,说明SE-AdvGAN生成的高质量对抗样本可以更有效地评估DNN模型的鲁棒性。 展开更多
关键词 对抗样本 生成对抗网络 稀疏扰动 深度神经网络 鲁棒性
在线阅读 下载PDF
基于多分支增强和融合注意力机制的水下图像增强算法 被引量:1
16
作者 姚斌 韩典芝 +1 位作者 徐轩 李婉 《陕西科技大学学报》 北大核心 2025年第1期193-202,共10页
由于水对光的折射和吸收,水下图像通常会出现严重的退化,如色偏、模糊、能见度低等.为了提高水下图像的可视性,提出了一种基于多分支增强和融合注意力机制的水下图像增强网络MBFA-GAN.首先,通过分析水下图像的色彩退化和模糊因素,设计... 由于水对光的折射和吸收,水下图像通常会出现严重的退化,如色偏、模糊、能见度低等.为了提高水下图像的可视性,提出了一种基于多分支增强和融合注意力机制的水下图像增强网络MBFA-GAN.首先,通过分析水下图像的色彩退化和模糊因素,设计了青品色温修复模块和模糊恢复模块对水下图像进行色彩矫正和模糊恢复.然后,基于对多个分支特征的互补性考虑,采用循环合并策略将多个分支增强的特征利用自适应融合模块进行融合,逐步增强图像细节.最后,设计了融合注意力模块,用于深度挖掘图像在通道维度和像素维度的相关性矩阵,以提高增强图像的真实性.实验结果表明,与现有算法相比,提出的水下图像增强算法去模糊效果较好且颜色更真实,可以有效改善水下图像色偏和模糊的问题. 展开更多
关键词 水下图像增强 多分支增强 融合注意力 生成对抗网络
在线阅读 下载PDF
基于改进ACGAN算法的带钢小样本数据增强方法 被引量:1
17
作者 师红宇 王嘉鑫 李怡 《计算机集成制造系统》 北大核心 2025年第1期211-218,共8页
为了解决带钢小样本数据集在深度学习中出现的模式崩溃、图像模糊和错判等问题,提出一种改进的ACGAN数据增强方法。首先,模型中引入带梯度惩罚项的Wasserstein距离作为损失函数,解决了模式崩溃和训练不稳定问题;其次,生成器网络中改进... 为了解决带钢小样本数据集在深度学习中出现的模式崩溃、图像模糊和错判等问题,提出一种改进的ACGAN数据增强方法。首先,模型中引入带梯度惩罚项的Wasserstein距离作为损失函数,解决了模式崩溃和训练不稳定问题;其次,生成器网络中改进标签反卷积网络,使标签信息更好地贯穿整个生成网络,并在其末端设计了去噪结构,提高了生成图像质量;接着,判别器网络中引入级联融合思想,增强了网络判别能力;最后,将改进前后的模型在NEU带钢表面缺陷数据集和MNIST数据集上进行对比实验,结果表明:所提模型生成各类样本图像的清晰度、准确性明显提高,并且客观指标FID的平均值在NEU带钢表面缺陷数据集上下降了15.8%,在MNIST数据集下降了73%,为带钢小样本数据集的扩充提供了一种新方法。 展开更多
关键词 图像生成 生成对抗网络 数据增强 小样本
在线阅读 下载PDF
一种高性能的多任务图像生成RL-GAN模型
18
作者 叶学义 石悦 +2 位作者 韩卓 李文杰 王浩 《电光与控制》 北大核心 2025年第5期47-52,73,共7页
为了将GAN扩展到多任务模式并构建高性能模型,将强化学习(RL)代理与GAN结合,构建多任务图像生成RL-GAN模型,并通过更换RL代理训练算法、设置更合理的AC网络损失函数及替换网络结构三个方面进行优化,旨在提升模型性能。实验结果显示,在... 为了将GAN扩展到多任务模式并构建高性能模型,将强化学习(RL)代理与GAN结合,构建多任务图像生成RL-GAN模型,并通过更换RL代理训练算法、设置更合理的AC网络损失函数及替换网络结构三个方面进行优化,旨在提升模型性能。实验结果显示,在两种多任务图像修复实验中,所提模型的生成结果均满足视觉需求,且与当前多任务模式的主流方法--多GAN叠加相比,RL-GAN模型具有更快的收敛速度和图像处理速度以及更高的输出质量,且引入RL代理后模型的精度与效率也更优,优化后的模型多任务处理能力显著提升。 展开更多
关键词 多任务图像生成 强化学习 生成对抗网络
在线阅读 下载PDF
基于压裂信号和数据增强的脆性智能预测方法
19
作者 王婷婷 杜学童 +2 位作者 赵万春 蔡萌 史晓东 《吉林大学学报(地球科学版)》 北大核心 2025年第3期1014-1027,共14页
储层脆性的精确预测对地下岩土工程灾害预警和油气开采具有重要意义。基于岩石受压破裂时产生的声发射信号,提出一种脆性智能预测方法。实验制备4类尺寸相同但脆性不同的岩石进行室内单轴岩石压裂,将采集到的破裂信号经预处理后制作样... 储层脆性的精确预测对地下岩土工程灾害预警和油气开采具有重要意义。基于岩石受压破裂时产生的声发射信号,提出一种脆性智能预测方法。实验制备4类尺寸相同但脆性不同的岩石进行室内单轴岩石压裂,将采集到的破裂信号经预处理后制作样本数据集。针对训练数据不足和传统数据增强方法的局限性等问题,在深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)的基础上进行改进,设计一种基于谱归一化的深度卷积注意力生成对抗网络(CS-DCGAN)模型,输出高质量样本时频图像,丰富原始样本数据集,作为残差网络的输入;对图像的有效信息进行特征提取、学习、迭代训练以建立脆性智能预测模型,通过不断调整模型的超参数以提高模型预测精度;最后进行多指标评估。实验结果表明,相较于传统DCGAN,CS-DCGAN生成的样本质量较高,FID(Frechet inception distance)最小值为67.96,能够缓解过拟合等问题,提高了残差网络的性能,对不同脆性的平均识别准确率最高可达94.95%,证明了所提方法的有效性。 展开更多
关键词 岩石脆性 声发射信号 生成对抗网络 残差网络 数据增强
在线阅读 下载PDF
基于域自适应对抗生成样本的金属损伤导波智能迁移识别方法
20
作者 王莉 刘国强 +2 位作者 杨宇 张超 裘进浩 《振动与冲击》 北大核心 2025年第3期191-201,209,共12页
针对工程场景下缺乏大量标注完备的真实损伤样本,而难以学习到可用的智能诊断模型的难题,该文提出了一种基于域自适应对抗生成样本的金属损伤导波智能迁移诊断方法。首先,采用有限元仿真得到了大量标签丰富的模拟损伤导波监测数据;然后... 针对工程场景下缺乏大量标注完备的真实损伤样本,而难以学习到可用的智能诊断模型的难题,该文提出了一种基于域自适应对抗生成样本的金属损伤导波智能迁移诊断方法。首先,采用有限元仿真得到了大量标签丰富的模拟损伤导波监测数据;然后,采用生成对抗神经网络(wasserstein Generative adversarial networks with gradient penalty,WGAN-GP)实现了模拟损伤监测样本至真实损伤的域自适应对抗样本的生成;最后,构建了基于对抗生成样本的损伤智能诊断模型,实现了对未知标签真实损伤监测样本的高可靠分类诊断。金属开孔结构疲劳裂纹导波监测试验验证结果表明,所提方法可实现模拟损伤导波识别知识至疲劳损伤的跨域迁移,且在无真实损伤标注样本时也可实现对裂纹损伤的高精度智能识别。 展开更多
关键词 疲劳裂纹 导波 生成对抗神经网络(WGAN-GP) 卷积神经网络 迁移学习
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部