期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进CycleGAN的非配对CMR图像增强
1
作者 郑伟 吴禹波 +2 位作者 冯晓萌 马泽鹏 宋铁锐 《河北大学学报(自然科学版)》 北大核心 2025年第2期204-215,共12页
心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域... 心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断. 展开更多
关键词 心脏磁共振成像 图像增强 空频域特征 循环一致性生成对抗网络
在线阅读 下载PDF
改进CycleGAN的半监督建筑物提取算法
2
作者 卢鹏 仲闯 《计算机工程》 北大核心 2025年第3期241-251,共11页
建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算... 建筑物提取需要大量的标注数据进行训练,收集和标注数据需要耗费大量时间。为了在小样本遥感图像数据集上基于半监督学习实现建筑物提取的目的,构建4组建筑物提取数据集,提出了一种基于循环一致性生成对抗网络(CycleGAN)的建筑物提取算法。首先,在生成器中引入全局注意力机制(GAM)以增强对建筑物和图像背景细节特征的区分;其次,在判别器中加入谱归一化层以增强训练稳定性,解决了训练过程中梯度消失问题;最后,改进对抗损失和循环一致性损失以提高生成图像的质量,避免生成图像的过度平滑化,并引入Identity损失以限制生成器不会自主修改输入图像的颜色,保证输入图像与输出图像颜色组成的一致性。实验结果表明,在第1组小样本数据集上,与UNIT、MUNIT、U-GAT-IT、SPatchGAN、QS-Attn模型进行半监督实验对比,结构相似性(SSIM)值和准确率分别至少提高了3、8.1百分点,在扩充数据规模的数据集上,使用改进后的算法进行全监督和半监督实验对比,验证了改进后的算法在小样本遥感图像数据集上实现建筑物半监督提取的有效性。 展开更多
关键词 建筑物提取 循环一致性生成对抗网络 谱归一化 全局注意力机制 半监督
在线阅读 下载PDF
基于改进CycleGAN网络的面部腧穴定位算法
3
作者 杨婕 高阳 +3 位作者 段郑玉 姬冰霞 张雄 上官宏 《智能系统学报》 北大核心 2025年第4期1024-1032,共9页
现有腧穴自动定位方法存在定位误差大、算法泛化能力弱、操作复杂等缺点,不能满足大规模针灸临床应用的需求。针对以上问题,提出一种适用于面部腧穴定位的改进循环一致生成对抗网络。采用双循环对抗训练机制,通过对称生成对抗网络的交... 现有腧穴自动定位方法存在定位误差大、算法泛化能力弱、操作复杂等缺点,不能满足大规模针灸临床应用的需求。针对以上问题,提出一种适用于面部腧穴定位的改进循环一致生成对抗网络。采用双循环对抗训练机制,通过对称生成对抗网络的交替迭代实现网络性能优化;针对面部图像的特点,设计内嵌腧穴信息感知块的对称编解码生成器和能够在不同感受野下处理特征的多尺度分块判别器;采用多个损失函数对腧穴定位网络进行约束。实验结果表明,所提算法可实现与人工定位视觉效果相似的结果,为面部腧穴智能定位技术的研究提供全新的视野。 展开更多
关键词 针灸 面部腧穴 智能定位 循环一致生成对抗网络 生成器 多尺度判别器 交替迭代 中医智能化
在线阅读 下载PDF
基于改进CycleGAN的水上图像去雾算法
4
作者 黄超 胡勤友 黄子硕 《上海海事大学学报》 北大核心 2025年第1期17-22,111,共7页
雾会使水上拍摄的图像质量下降,导致基于视觉的船舶智能感知系统和水域监控系统受到影响;收集水面上的有雾图像和无雾图像难度较大。针对上述问题,提出一种基于改进循环生成对抗网络(cycle-consistent generative adversarial network,C... 雾会使水上拍摄的图像质量下降,导致基于视觉的船舶智能感知系统和水域监控系统受到影响;收集水面上的有雾图像和无雾图像难度较大。针对上述问题,提出一种基于改进循环生成对抗网络(cycle-consistent generative adversarial network,CycleGAN)的水上图像去雾算法。将CycleGAN的生成器模块替换为改进后的门控上下文聚合网络(gated context aggregation network,GCANet),同时使用感知损失从高级语义角度约束图像的生成质量。实验表明:在合成数据集上,所提算法的峰值信噪比和结构相似度分别为25.26和0.9047,相较于对比算法分别提高了13.6%~41.2%和10.9%~17.9%,并在水上真实数据集上展示出了更优的清晰度和色彩真实性。 展开更多
关键词 图像去雾 循环生成对抗网络(cyclegan) 门控上下文聚合网络(GCANet) 感知损失
在线阅读 下载PDF
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:2
5
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本扩增 侧扫声纳 循环生成对抗网络 通道和空间注意力模块 最小二乘生成对抗网络
在线阅读 下载PDF
用于吊弦故障检测的CycleGAN样本生成方法研究
6
作者 肖昊宇 顾桂梅 曹文翔 《传感器与微系统》 CSCD 北大核心 2024年第8期49-52,共4页
针对深度学习算法在接触网吊弦缺陷识别时,存在数据样本不平衡、缺陷样本少、难以准确体现识别算法有效性的问题,提出了一种基于改进循环生成对抗网络(CycleGAN)模型的吊弦缺陷样本生成方法。首先,在生成器中用密集卷积块替换残差块,使... 针对深度学习算法在接触网吊弦缺陷识别时,存在数据样本不平衡、缺陷样本少、难以准确体现识别算法有效性的问题,提出了一种基于改进循环生成对抗网络(CycleGAN)模型的吊弦缺陷样本生成方法。首先,在生成器中用密集卷积块替换残差块,使得生成模型表现更稳定,收敛速度更快;然后,在生成器卷积层和密集卷积块后添加坐标注意力机制,使得生成的吊弦缺陷样本更清晰;最后,将常见的缺陷吊弦数据迁移到正常吊弦数据上,生成吊弦缺陷样本。仿真实验结果表明:所提出的方法比深度卷积生成对抗网络(DCGAN)算法和CycleGAN算法生成的图像更清晰,最终所生成的样本可以替代真实样本。 展开更多
关键词 吊弦 循环生成对抗网络 密集卷积网络 坐标注意力机制 样本扩充
在线阅读 下载PDF
基于改进CycleGAN的水下图像颜色校正与增强 被引量:12
7
作者 李庆忠 白文秀 牛炯 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期820-829,共10页
针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映... 针对水下观测图像的颜色失真和散射模糊问题,提出一种基于改进循环一致性生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的水下图像颜色校正与增强算法.为了利用CycleGAN学习水下降质图像到空气中图像的映射关系,对传统CycleGAN的损失函数进行了改进,提出了基于图像强边缘结构相似度(Strong edge and structure similarity,SESS)损失函数的SESS-CycleGAN,SESS-CycleGAN可以在保留原水下图像的边缘结构信息的前提下实现水下降质图像的颜色校正和对比度增强.为了确保增强后图像和真实脱水图像颜色的一致性,建立了SESSCycleGAN和正向生成网络G相结合的网络结构;并提出了两阶段学习策略,即先利用非成对训练集以弱监督方式进行SESS-CycleGAN学习,然后再利用少量成对训练集以强监督方式进行正向生成网络G的监督式学习.实验结果表明:本文算法在校正水下图像颜色失真的同时还增强了图像对比度,且较好地实现了增强后图像和真实脱水图像视觉颜色的一致性. 展开更多
关键词 水下图像 深度学习 循环一致性生成对抗网络 颜色校正 图像增强
在线阅读 下载PDF
用于绝缘子故障检测的CycleGAN小样本库扩增方法研究 被引量:9
8
作者 崔克彬 潘锋 《计算机工程与科学》 CSCD 北大核心 2022年第3期509-515,共7页
在深度学习的训练中,绝缘子检测需要大量的故障绝缘子,而实际难以获得大量故障绝缘子数据。生成对抗网络为扩增训练样本提供了可行的解决办法。在循环一致性生成对抗网络(CycleGAN)结构上补充缺陷绝缘子样本,通过更改损失函数来优化模型... 在深度学习的训练中,绝缘子检测需要大量的故障绝缘子,而实际难以获得大量故障绝缘子数据。生成对抗网络为扩增训练样本提供了可行的解决办法。在循环一致性生成对抗网络(CycleGAN)结构上补充缺陷绝缘子样本,通过更改损失函数来优化模型,将正向生成器生成的图像,输入到反向生成器,保持样本整体轮廓的同时,增加了差异性。将改进的CycleGAN模型与其他GAN模型在SSD目标检测方法中进行比较,结果表明改进的CycleGAN扩增数据集的方法相较于其他扩增方法在绝缘子掉串检测识别率上有明显提升。 展开更多
关键词 循环一致性生成对抗网络 绝缘子 样本扩增 风格转换
在线阅读 下载PDF
基于改进CycleGAN的光学图像迁移生成水下小目标合成孔径声纳图像算法研究 被引量:8
9
作者 李宝奇 黄海宁 +1 位作者 刘纪元 李宇 《电子学报》 EI CAS CSCD 北大核心 2021年第9期1746-1753,共8页
针对循环生成对抗网络CycleGAN(Cycle Generative Adversarial Networks)在光学图像迁移生成水下小目标合成孔径声纳图像过程中存在质量差和速度慢的问题,本文提出一种新的特征提取单元SDK(Selective Dilated Kernel),并利用SDK设计了... 针对循环生成对抗网络CycleGAN(Cycle Generative Adversarial Networks)在光学图像迁移生成水下小目标合成孔径声纳图像过程中存在质量差和速度慢的问题,本文提出一种新的特征提取单元SDK(Selective Dilated Kernel),并利用SDK设计了一个新的生成器网络SDKNet.与此同时,提出了一种新的循环一致损失函数MS-CCLF(Multiscale Cyclic Consistent Loss Function),MS-CCLF增加了图像多尺度结构相似性约束.在自建的图像迁移数据集OPT-SAS上,本文SM-CycleGAN(Selective and Multiscale Cycle Generative Adversarial Networks)比原始CycleGAN的图像迁移质量提升4.64%,生成器网络参数降低4.13MB,运算时间减少0.143s.实验结果表明,SM-CycleGAN更适合水下小目标光学图像到合成孔径声纳图像的迁移任务. 展开更多
关键词 光学图像迁移生成合成孔径声纳图像 生成对抗网络 循环生成对抗网络 可选择空洞核网络 多尺度结构相似性
在线阅读 下载PDF
基于改进CycleGAN的浑浊水体图像增强算法研究 被引量:3
10
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2504-2511,共8页
针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设... 针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设计了一个新的生成器网络BSDKNet。与此同时,提出一种多尺度损失函数MLF(Multi-scale Loss Function)。在自建的浑浊水体图像增强数据集TC(Turbid and Clear)上,该文BM-CycleGAN比原始CycleGAN的精度提升3.27%,生成器网络参数降低4.15MB,运算时间减少0.107s。实验结果表明BMCycleGAN适合浑浊水体图像增强任务。 展开更多
关键词 图像增强 生成对抗网络 循环生成对抗网络 深度可分离空洞卷积 多尺度结构相似性
在线阅读 下载PDF
一种基于CycleGAN改进的低剂量CT图像增强网络 被引量:4
11
作者 廖仕敏 刘仰川 +2 位作者 朱叶晨 王艳玲 高欣 《图学学报》 CSCD 北大核心 2022年第4期570-579,共10页
低剂量CT是一种有效且相对安全的胸腹部疾病筛查手段,但图像中的伪影和噪声会严重影响医生的诊断。基于深度学习的图像增强方法中网络训练大多依赖于难以获取的配对数据,即同一患者相同部位像素级匹配的低剂量和常规剂量CT图像。针对非... 低剂量CT是一种有效且相对安全的胸腹部疾病筛查手段,但图像中的伪影和噪声会严重影响医生的诊断。基于深度学习的图像增强方法中网络训练大多依赖于难以获取的配对数据,即同一患者相同部位像素级匹配的低剂量和常规剂量CT图像。针对非配对数据,提出了一种基于循环一致性生成对抗网络(CycleGAN)改进的低剂量CT图像增强网络,在生成器前添加浅层特征预提取模块,增强对CT图像特征的提取能力;并利用深度可分离卷积替换生成器中的部分普通卷积,减少网络参数和显存占用。该网络使用3275张低剂量CT图像和2790张非配对常规剂量CT图像进行训练,另外1716张低剂量CT图像进行测试。结果表明,该网络生成的CT图像的平均感知图像质量评价指标(PIQE)为45.53,比CycleGAN的结果降低了8.3%,更远低于三维块匹配滤波(BM3D)31.9%、无监督图像转换网络(UNIT)20.9%,且在结构细节保持、噪声和伪影抑制方面均获得了更好的主观视觉效果,是一种具有潜在临床应用前景的低剂量CT图像增强方法。 展开更多
关键词 低剂量CT 图像增强 深度学习 非配对数据 循环一致性生成对抗网络
在线阅读 下载PDF
基于CycleGAN的图像隐私保护 被引量:5
12
作者 谢艺艺 张玉书 +2 位作者 赵若宇 温文媖 周玉倩 《应用科学学报》 CAS CSCD 北大核心 2023年第2期228-239,共12页
社交媒体和云平台为图像的传播和存储带来了便利,但同时也引起了人们对于图像隐私的担忧。因此,需要采取一定的措施去保护图像的隐私,以防止隐私被窃取和非法使用。基于上述目标,本文提出了基于循环对抗网络(cycle-consistent generativ... 社交媒体和云平台为图像的传播和存储带来了便利,但同时也引起了人们对于图像隐私的担忧。因此,需要采取一定的措施去保护图像的隐私,以防止隐私被窃取和非法使用。基于上述目标,本文提出了基于循环对抗网络(cycle-consistent generative adversarial networks,CycleGAN)的图像隐私保护。为了在图像隐私保护中兼顾可用性,该方法先用图像分割和CycleGAN组合,选择出不同的分割系数来辅助生成不同程度的隐私保护图像。然后利用可逆信息隐藏对生成的隐私保护图像进行信息的嵌入,从而阻止非法使用者在图像重构中提取隐私信息,进而保证了整个过程图像隐私保护和可用性的平衡。本文用PIPA数据集对该方法进行训练和测试,采用峰值信噪比和结构相似性指数作为客观指标对隐私保护的图像进行评估。实验结果表明,本方案在图像隐私保护和可用性两方面都优于其他对比方案。 展开更多
关键词 图像隐私保护 图像分割 cyclegan模型 可逆信息隐藏 图像重构
在线阅读 下载PDF
基于Style-CycleGAN-VC的非平行语料下的语音转换 被引量:3
13
作者 高俊峰 陈俊国 《计算机应用与软件》 北大核心 2021年第9期133-139,159,共8页
非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在... 非平行语料下的语音转换(Voice Conversion,VC)是指在非平行语音数据集的情况下改变源语音特征到目标语音特征的映射技术。由于非平行数据的缺陷,所以当前研究多集中于平行语料下的语音转换,而有关非平行语料的研究提出的模型架构存在局限性,在特定说话人下进行训练得到的模型无法适用于任意说话人下的语音转换,且转化效果有待提高。对此,借鉴两种生成式对抗网络(Generative Adversarial Network,GAN)的变体StyleGAN和CycleGAN的结构特点,对生成器网络的层重新设计,添加辅助特征提取神经网络,提出一种称为Style-CycleGAN-VC的新模型,实现了非平行语料下任意说话人之间的任意语音转换。实验表明,与CycleGAN-VC模型相比,该模型对训练的特定说话人的语音转换效果有所提高,对任意说话人的语音转换效果与其相近。 展开更多
关键词 语音转换 非平行语料 生成式对抗网络 Style-cyclegan-VC 语音合成
在线阅读 下载PDF
基于改进CycleGAN的道路场景语义分割研究 被引量:2
14
作者 张如涛 黄山 汪鸿浩 《计算机工程与应用》 CSCD 北大核心 2022年第15期278-284,共7页
道路场景下的语义分割是无人驾驶中关键的技术,也是计算机视觉中重要的一个领域,而传统的语义分割方法需要对训练数据进行像素级的标注,对数据的要求极高。针对这一问题,将改进的循环生成对抗网络(cycleconsistent adversarial networks... 道路场景下的语义分割是无人驾驶中关键的技术,也是计算机视觉中重要的一个领域,而传统的语义分割方法需要对训练数据进行像素级的标注,对数据的要求极高。针对这一问题,将改进的循环生成对抗网络(cycleconsistent adversarial networks,CycleGAN)用于道路场景语义分割,该网络避免了大量的像素级标注且不需要成对的数据集,降低了数据集的要求。将原网络的目标函数用最小二乘损失和Smooth L1范数替代,增加了网络训练的稳定性且提高了生成图像的质量,并引入特征损失保证图像特征的保留,使得生成图像更加真实。使用道路场景分割中常用的Cityscapes数据集进行实验,并用语义分割领域常用的性能评价指标验证了方法的有效性,实验结果表明相较于原网络各性能都有一定提升。 展开更多
关键词 语义分割 循环生成对抗网络 损失函数 图像生成
在线阅读 下载PDF
谱归一化CycleGAN的轴承故障迁移诊断研究 被引量:1
15
作者 李洁松 刘韬 伍星 《振动与冲击》 EI CSCD 北大核心 2023年第24期282-289,共8页
深度学习无需先验特征提取的优点使其受到了工业设备的智能故障诊断领域研究的青睐,但深度学习的低鲁棒性和较高的数据要求阻碍其实际应用。为适应在工业现场复杂多变的工况,该文提出了一种基于谱归一化(spectral normalization, SN)和... 深度学习无需先验特征提取的优点使其受到了工业设备的智能故障诊断领域研究的青睐,但深度学习的低鲁棒性和较高的数据要求阻碍其实际应用。为适应在工业现场复杂多变的工况,该文提出了一种基于谱归一化(spectral normalization, SN)和循环一致对抗网络(cycle-consistent adversarial networks, CycleGAN)的SN-1DCycleGAN网络用于变工况条件下的故障数据迁移生成和诊断。首先,搭建一种适应振动数据生成的1DCycleGAN网络,用于获得同种工况下正常信号与故障信号的映射关系。使用谱归一化对网络进行改进,有效的防止CycleGAN网络训练过程中训练不稳定情况。其次,通过不同工况的正常数据生成自适应的故障数据,实现变工况迁移生成的目的。最后,3种评价指标以及分类器准确率对数据生成质量进行定量评估,并使用仿真与试验信号进行验证。试验结果表明,SN-1DCycleGAN在一维振动信号上具备一定迁移效果,可对变工况数据进行增强,提升分类器的准确率。 展开更多
关键词 智能故障诊断 循环一致对抗网络 谱归一化 变工况迁移生成
在线阅读 下载PDF
基于CycleGAN和CNN的GIS振动信号去噪与机械缺陷识别 被引量:10
16
作者 廖景雯 关向雨 +2 位作者 林建港 刘江 赵俊义 《电力工程技术》 北大核心 2023年第5期37-45,共9页
针对现场气体绝缘开关设备(gas insulated switchgear,GIS)振动检测结果易受外界背景噪声干扰的不足,文中提出基于生成对抗网络和卷积神经网络的现场GIS接触缺陷抗干扰检测框架。首先,开展GIS通流试验,获取在触指缺失、螺栓松动、存在... 针对现场气体绝缘开关设备(gas insulated switchgear,GIS)振动检测结果易受外界背景噪声干扰的不足,文中提出基于生成对抗网络和卷积神经网络的现场GIS接触缺陷抗干扰检测框架。首先,开展GIS通流试验,获取在触指缺失、螺栓松动、存在分解物和导体对接深度不足4种典型缺陷下的振动波形,并收集包含背景噪声干扰的现场GIS振动波形作为参考,通过对振动数据进行图谱转化,构建用于背景噪声干扰去除和缺陷分类的数据集;其次,将现场振动图谱作为输入,采用周期一致生成对抗网络(cycle-consistent generative adversarial network,CycleGAN)对GIS进行现场背景噪声干扰去除;然后,采用AlexNet和ResNet18卷积网络结构对振动图谱特征进行提取;最后,采用全连接层对图谱特征进行分类,并对比不同振动信号图谱算法对分类结果的影响。结果表明,对于现场数据,所提模型的最大均值差异(maximum mean discrepancy,MMD)可达0.9560,弗雷谢特起始距离(Fréchet inception distance,FID)可达62.09;Mel-ResNet18模型对GIS接触缺陷分类的准确率达99.43%。文中所提方法对于提高现场GIS振动检测和接触缺陷诊断结果的有效性具有重要应用价值。 展开更多
关键词 气体绝缘开关设备(GIS) 接触缺陷 机械振动 周期一致生成对抗网络(cyclegan) AlexNet ResNet18
在线阅读 下载PDF
基于注意力机制的CycleGAN服装局部风格迁移研究 被引量:5
17
作者 陈佳 董学良 +1 位作者 梁金星 何儒汉 《计算机工程》 CAS CSCD 北大核心 2021年第11期305-312,共8页
针对复杂背景下服装图像局部区域风格迁移难以控制及迁移后容易产生边界伪影的问题,提出一种基于注意力机制的CycleGAN服装局部风格迁移方法。通过VGG16网络分别提取服装图像的内容特征与风格特征,将其输入基于注意力机制的CycleGAN生... 针对复杂背景下服装图像局部区域风格迁移难以控制及迁移后容易产生边界伪影的问题,提出一种基于注意力机制的CycleGAN服装局部风格迁移方法。通过VGG16网络分别提取服装图像的内容特征与风格特征,将其输入基于注意力机制的CycleGAN生成器中,应用注意力机制在复杂背景下的各个服装区域分配概率分布信息,获得注意力分布更多的区域及相关度更高的区域,并采用改进的损失函数校正边界伪影,对该区域进行风格迁移得到所需的风格迁移服装图像。实验结果表明,与CNN、FCN、BeautyGAN图像局部风格迁移方法相比,该方法不仅可以突出服装图像局部风格迁移效果,而且增强了图像细节,有利于提高输出图像的真实性和艺术性。 展开更多
关键词 图像风格迁移 边界伪影 注意力机制 循环生成对抗网络 损失函数
在线阅读 下载PDF
基于改进生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断
18
作者 马良玉 黄日灏 +3 位作者 段晓冲 胡景琛 高海天 马进 《南京信息工程大学学报》 北大核心 2025年第4期528-537,共10页
深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡... 深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断方法,并以旋转机械滚动轴承振动故障诊断为例对方法进行验证.首先,将原始振动信号的时频图作为循环生成对抗网络的输入;然后,为克服训练不稳定、模型不能及时收敛等问题,引入谱归一化和权值衰减,利用改进的循环生成对抗网络生成更多的故障样本;最后,采用Swin Transformer模型来进行故障诊断,并与随机森林(RF)、堆叠自编码器(SAE)、支持向量机(SVM)、卷积神经网络(CNN)进行对比.在美国凯斯西储大学(CWRU)轴承故障数据集进行多组不同的故障样本生成与故障诊断实验,结果表明,本文方法可以在训练样本数量较少时生成质量较高的合成样本,与其他方法相比,Swin Transformer模型故障诊断精度更高,在不平衡数据的故障诊断方面具有很大的潜力. 展开更多
关键词 滚动轴承 故障诊断 不平衡样本 循环生成对抗网络 深度学习
在线阅读 下载PDF
基于循环生成对抗网络的风格迁移蜡染图案设计
19
作者 汪鑫月 吕健 +2 位作者 侯宇康 周鑫 林俊希 《毛纺科技》 北大核心 2025年第6期35-41,共7页
为实现蜡染图案的数字化创新设计,提出一种基于循环生成对抗网络(CycleGAN)的蜡染图案风格迁移生成设计方法,运用计算机辅助技术介入到传统印染织物的图案再生成设计和创新。首先通过图像处理、数据增强等技术自行收集并构建蜡染数据集... 为实现蜡染图案的数字化创新设计,提出一种基于循环生成对抗网络(CycleGAN)的蜡染图案风格迁移生成设计方法,运用计算机辅助技术介入到传统印染织物的图案再生成设计和创新。首先通过图像处理、数据增强等技术自行收集并构建蜡染数据集;然后通过CycleGAN对数据集中的图像进行训练,采用风格迁移算法实现蜡染图案的风格迁移生成新的艺术风格图案;最后计算峰值信噪比(PSNR)和结构相似性(SSIM)来评估生成图案质量。结果表明:生成图像在PSNR和SSIM指标上均取得了较好结果,能够生成较高质量的艺术风格图案,验证了方法的有效性,为蜡染图案的自动生成与数字化创新提供了理论依据和实践基础。 展开更多
关键词 循环生成对抗网络 风格迁移 蜡染图案 生成设计
在线阅读 下载PDF
基于新型循环生成对抗网络的电力系统短期负荷预测
20
作者 夏明章 姜通海 张智晟 《电气工程学报》 北大核心 2025年第2期237-244,共8页
针对提高电力系统短期负荷预测精度和预测稳定的问题,提出一种新型循环生成对抗网络(Cycle-consistent generative adversarial network,CycleGAN)。生成器和判别器分别为门控循环单元(Gated recurrent unit,GRU)和时间卷积网络(Tempora... 针对提高电力系统短期负荷预测精度和预测稳定的问题,提出一种新型循环生成对抗网络(Cycle-consistent generative adversarial network,CycleGAN)。生成器和判别器分别为门控循环单元(Gated recurrent unit,GRU)和时间卷积网络(Temporal convolutional network,TCN)。生成器使用门控循环单元神经网络,能较好地适应时序预测任务和解决模型梯度问题。判别器模型使用时间卷积神经网络,在捕捉时序任务数据中的长期依赖关系上有着较好效果,并且更有效地识别生成器生成的伪造样本与真实样本之间的差异。同时,循环生成对抗网络引入了循环一致性损失函数,可以让模型在训练过程中更为充分地学习预测规律。通过算例试验,证明所提出的新模型具有更好的预测精度和稳定性。 展开更多
关键词 短期负荷预测 门控循环单元 时间卷积神经网络 循环生成对抗网络 循环一致性损失函数
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部