The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp...The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.展开更多
The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chass...The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This pape...Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.展开更多
Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a fun...Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a function of coal compressive strength,pick carbide tip diameter and the cutting depth per drum revolution.The results show that the cutting force is linearly related to the compressive strength.The relationship between the cutting force and both the carbide tip diameter and the cutting depth are exponential.Fluctuation in the cutting force does not increase with coal compressive strength but it has a linear relationship to tip diameter.A plot of cutting force fluctuations versus the cutting depth follows a sigmoidal curve.Based on the analysis of these test results a theoretical basis is supplied for design and effective use of shearer drums.展开更多
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure proce...The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole.展开更多
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain s...The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.展开更多
Tool wear and breakage of the micro-milling tool is an important problem for high speed machining of hardened steel die and mould. Dry milling of S136 hardened steel is carried out using TiAlN coated carbide micro-end...Tool wear and breakage of the micro-milling tool is an important problem for high speed machining of hardened steel die and mould. Dry milling of S136 hardened steel is carried out using TiAlN coated carbide micro-end mill (2 mm).The effect of cutting speed, feed per tooth and radial depth of cut on cutting force is analyzed. Cutting parameters adapting to dry machining and strategy optimized for higher rate of material removal with lower cutting force are attained. Results of SEM observation show that the main failure patterns of micro-end mill are breakage of tool tip, wear and drop-off of surface coating, micro-chipping, and breakage of flank.展开更多
Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materia...Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.展开更多
The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasoni...The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.展开更多
文摘The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.
文摘The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
文摘Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.
基金Projects 2008AA062202 supported by the Hi-tech Research and Development Program of ChinaCX08B_041Z by the Innovation Foundation of Jiangsu Graduate Students
文摘Cutting tests were done using a test bed designed to measure pick cutting forces when cutting coal and rock.The test equipment has a drum with two starting helical vanes.Cutting forces on a pick were measured as a function of coal compressive strength,pick carbide tip diameter and the cutting depth per drum revolution.The results show that the cutting force is linearly related to the compressive strength.The relationship between the cutting force and both the carbide tip diameter and the cutting depth are exponential.Fluctuation in the cutting force does not increase with coal compressive strength but it has a linear relationship to tip diameter.A plot of cutting force fluctuations versus the cutting depth follows a sigmoidal curve.Based on the analysis of these test results a theoretical basis is supplied for design and effective use of shearer drums.
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
基金support from the National Natural Science Foundation of China(52204004)the National Science Fund for Distinguished Young Scholars(51725404)。
文摘The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole.
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
基金supported by the National Natural Science Foundation of China(No.51275227)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX11_0175)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST201326)
文摘The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.
文摘Tool wear and breakage of the micro-milling tool is an important problem for high speed machining of hardened steel die and mould. Dry milling of S136 hardened steel is carried out using TiAlN coated carbide micro-end mill (2 mm).The effect of cutting speed, feed per tooth and radial depth of cut on cutting force is analyzed. Cutting parameters adapting to dry machining and strategy optimized for higher rate of material removal with lower cutting force are attained. Results of SEM observation show that the main failure patterns of micro-end mill are breakage of tool tip, wear and drop-off of surface coating, micro-chipping, and breakage of flank.
基金supported by the National Natural Science Foundation of China(No.51475233)
文摘Ti2AlNb intermetallic alloy is a newly developed high-temperature resistant structural material due to its excellent material and mechanical properties,which also make it to be one of the most difficult-to-cut materials.In order to study the machinability of Ti2AlNb alloy,a series of turning experiments of Ti2AlNb alloy with varying cutting speed and feed rate using coated carbide tools are carried out.The results associated with cutting forces,cutting temperature and tool wear are presented and discussed.Moreover,the cutting performance of Ti2AlNb alloy is evaluated in comparison with that of most commonly used Ti6Al4 Vand Inconel 718 alloys in terms of the cutting forces and cutting temperature.The comparison results show that there is a correlation between the machinability and the mechanical properties of work material properties.Additionally,considering material removal rate and tool life,the optimized machining parameters for cutting Ti2AlNb alloys using coated carbide tools are recommended.
文摘The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.