In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com...In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction re...In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths .展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclina...In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.展开更多
A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for th...A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for the cutting conditions were obtained using the AdvantEdge. Also, the deformation of a workpiece was estimated in the second step using the ANSYS. The deformation was analyzed for a 150 mm-long workpiece at three different measuring points, such as 10, 70 and 130 mm from a reference point, and the amounts of the deformation were compared through experiments. /n the results of the comparison and analysis, the values obtained from these comparison and analysis represent similar tendencies. Also, it is verified that their geometric errors increase with the increase in temperature. In addition, regarding the factors that affect the deformation of a workpiecc, it can be seen that the geometric error in the lathe is about 15%, the error caused by the cutting force is about 10%, and the deformation caused by the heat is about 75%.展开更多
Ti Beta 21S (Ti-15Mo-2.7Nb-3Al-0.2Si) was devel op ed by TIMET in 1989. It is a metastable beta titanium alloy that offers subs tantial weight reductions over other engineering materials. Compared with common beta Ti ...Ti Beta 21S (Ti-15Mo-2.7Nb-3Al-0.2Si) was devel op ed by TIMET in 1989. It is a metastable beta titanium alloy that offers subs tantial weight reductions over other engineering materials. Compared with common beta Ti alloys, it offers the high specific strength, good cold formability, im proved oxidation resistance, elevated temperature strength, creep resistance, an d thermal stability. Besides the common characters of titanium alloy, such as po or heat diffusivity, low elastic modulus, Ti Beta 21S has very high specific str ength and good plasticity. These make Ti Beta 21S a difficult-to-cut material. In this paper, the tool wear and cutting force in milling process were studied by experiment. The tool wear experiments were carried out in order to determine the opticmum cutting parameters and tool material, and the purpose of cutting fo rce measurement is to explain the cuting phenomenon and tool wear results in fur ther degree. The machinablity assessment of Ti Beta 21S with different cutting t ools was given out. As a difficult-to-cut material, Ti Beta 21S should be mill ed with sharp-edged tool at lower cutting parameters to avoid severe wear of th e tool. Coolant should be used to conduct cutting heat. Proper tool material sho uld be selected, for example, the cutting force by YS25 tool is 20 percent lower than that by YG8 at the milling speed of 80 m/min. The roughness of flank and r ake surface is another important factor that affects tool wear and cutting f orce, and Ra should be below 0.2 μm while milling Ti Beta 21S. These results wi ll be useful in the actual production process, and have thrown new light on the cutting of difficult-to-cut material.展开更多
Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement ...Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement and interact with virtual representations of real world activities in real time. In this paper, a virtual cutting system is built which can simulate turning process, estimate tool wear and cutting force using artificial neural network etc. Using the simulated machining environment in virtual reality (VR), the user can practise and preview the operations for possible problems that might occur during implementation. This approach enables designers to evaluate and design feasible machining processes in a consistent manner as early as possible during the development process.展开更多
The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasoni...The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.展开更多
文摘In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
文摘In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths .
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金Project(51005232) supported by the National Natural Science Foundation of ChinaProject(20100481176) supported by the China Postdoctoral Science Foundation+1 种基金Project(201104583) supported by the China Postdoctoral Special FundProject(1101106c) supported by Jiangsu Postdoctoral Foundation, China
文摘In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE),Korea
文摘A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for the cutting conditions were obtained using the AdvantEdge. Also, the deformation of a workpiece was estimated in the second step using the ANSYS. The deformation was analyzed for a 150 mm-long workpiece at three different measuring points, such as 10, 70 and 130 mm from a reference point, and the amounts of the deformation were compared through experiments. /n the results of the comparison and analysis, the values obtained from these comparison and analysis represent similar tendencies. Also, it is verified that their geometric errors increase with the increase in temperature. In addition, regarding the factors that affect the deformation of a workpiecc, it can be seen that the geometric error in the lathe is about 15%, the error caused by the cutting force is about 10%, and the deformation caused by the heat is about 75%.
文摘Ti Beta 21S (Ti-15Mo-2.7Nb-3Al-0.2Si) was devel op ed by TIMET in 1989. It is a metastable beta titanium alloy that offers subs tantial weight reductions over other engineering materials. Compared with common beta Ti alloys, it offers the high specific strength, good cold formability, im proved oxidation resistance, elevated temperature strength, creep resistance, an d thermal stability. Besides the common characters of titanium alloy, such as po or heat diffusivity, low elastic modulus, Ti Beta 21S has very high specific str ength and good plasticity. These make Ti Beta 21S a difficult-to-cut material. In this paper, the tool wear and cutting force in milling process were studied by experiment. The tool wear experiments were carried out in order to determine the opticmum cutting parameters and tool material, and the purpose of cutting fo rce measurement is to explain the cuting phenomenon and tool wear results in fur ther degree. The machinablity assessment of Ti Beta 21S with different cutting t ools was given out. As a difficult-to-cut material, Ti Beta 21S should be mill ed with sharp-edged tool at lower cutting parameters to avoid severe wear of th e tool. Coolant should be used to conduct cutting heat. Proper tool material sho uld be selected, for example, the cutting force by YS25 tool is 20 percent lower than that by YG8 at the milling speed of 80 m/min. The roughness of flank and r ake surface is another important factor that affects tool wear and cutting f orce, and Ra should be below 0.2 μm while milling Ti Beta 21S. These results wi ll be useful in the actual production process, and have thrown new light on the cutting of difficult-to-cut material.
文摘Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement and interact with virtual representations of real world activities in real time. In this paper, a virtual cutting system is built which can simulate turning process, estimate tool wear and cutting force using artificial neural network etc. Using the simulated machining environment in virtual reality (VR), the user can practise and preview the operations for possible problems that might occur during implementation. This approach enables designers to evaluate and design feasible machining processes in a consistent manner as early as possible during the development process.
文摘The monitoring of cutting force in a vibration cutting process has a great significance in the popularization of ultrasonic vibration cutting technology. A new monitoring method of which the cutting force of ultrasonic elliptic vibration cutting is monitored using the electrical properties of transducer was proposed by studying on the relationship of cutting force, transducer electric impedance and load. A measurement system was designed for the electrical properties of transducer. The feasibility of cutting force monitoring method based on the electrical properties of piezoelectric transducer was proved by the cutting experiments.