The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(H...The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(HFD).Results showed that SCGH significantly reduced water intake,fasting blood glucose level and glycated hemoglobin level.Moreover,the oral glucose tolerance,insulin resistance and plasma lipid level in diabetic rats were also alleviated.Furthermore,histological analysis showed that SCGH effectively protected the tissue structure of liver.In addition,mechanism studies showed that SCGH improved glucose metabolism via activating the IRS/Akt signaling pathway,and promoted lipid metabolism via activating the AMPK signaling pathway.In summary,these findings suggested that SCGH have potential anti-diabetic effects by improving insulin resistance and lipid metabolism disorders.展开更多
Enzymatic hydrolysis has been widely used to produce bioactive hydrolysates from sea cucumber body wall.Here,inspired by the clarification of Apostichopus japonicus genome,we investigated the enzymatic hydrolysis of s...Enzymatic hydrolysis has been widely used to produce bioactive hydrolysates from sea cucumber body wall.Here,inspired by the clarification of Apostichopus japonicus genome,we investigated the enzymatic hydrolysis of sea cucumber body wall by using the omics strategy.Shared proteins,including major yolk proteins,collagens,extracellular matrix glycoproteins and muscle proteins,were released from the body wall by different hydrolysis condition.A portfolio of 216 shared peptides were detected in the peptidome by papain with different hydrolysis time,while 32 shared peptides were detected in the peptidome by differing proteases.Unshared peptides and the relative abundance distribution profiles of shared peptides changed depending on hydrolysis approaches,indicating dynamic changes of peptidome during hydrolysis.Moreover,release of sulfated fucan and fucosylated chondroitin sulfate changed with the hydrolysis condition.The monitoring of dynamic enzymatic hydrolysis process at a molecular scale would contribute to production and quality control of sea cucumber hydrolysates.展开更多
Sea cucumber detection is widely recognized as the key to automatic culture.The underwater light environment is complex and easily obscured by mud,sand,reefs,and other underwater organisms.To date,research on sea cucu...Sea cucumber detection is widely recognized as the key to automatic culture.The underwater light environment is complex and easily obscured by mud,sand,reefs,and other underwater organisms.To date,research on sea cucumber detection has mostly concentrated on the distinction between prospective objects and the background.However,the key to proper distinction is the effective extraction of sea cucumber feature information.In this study,the edge-enhanced scaling You Only Look Once-v4(YOLOv4)(ESYv4)was proposed for sea cucumber detection.By emphasizing the target features in a way that reduced the impact of different hues and brightness values underwater on the misjudgment of sea cucumbers,a bidirectional cascade network(BDCN)was used to extract the overall edge greyscale image in the image and add up the original RGB image as the detected input.Meanwhile,the YOLOv4 model for backbone detection is scaled,and the number of parameters is reduced to 48%of the original number of parameters.Validation results of 783images indicated that the detection precision of positive sea cucumber samples reached 0.941.This improvement reflects that the algorithm is more effective to improve the edge feature information of the target.It thus contributes to the automatic multi-objective detection of underwater sea cucumbers.展开更多
Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols.Interestingly,our recent study found that intervention with sea cucumber su...Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols.Interestingly,our recent study found that intervention with sea cucumber sulfated sterols could significantly increase blood glucose levels of healthy mice in the presence of glucose,while cholesterol sulfate,as one of sulfated sterols,did not have the same effect.However,the exact mechanism of sulfated sterols on glucose metabolism is still unknown.In the present study,we investigated the potential mechanism by which sulfated sterols influenced blood glucose homeostasis in healthy mice.Results showed that intervention with sea cucumber sulfated sterols did not affect the levels of hormones related to glucose metabolism,while led to a significant decrease in the synthesis of liver glycogen and muscle glycogen.Besides,the expression of proteins associated with the promotion of gluconeogenesis dramatically increased in the mice intervened with sea cucumber sulfated sterols.These findings suggested that sea cucumber sulfated sterols might change blood glucose metabolism in healthy mice by reducing glycogenesis and promoting gluconeogenesis.展开更多
基金supported by the Natural Science Foundation of Guangxi(2016GXNSFEA380003)Guangxi Science and Technology Major Special Project(AA17204075)+1 种基金Guangxi Science and Technology Major Special Project(AA4102)Shandong Provincial Key R&D Program(LJNY202018)。
文摘The present study investigated the anti-diabetic activity and potential mechanisms of sea cucumber gonad hydrolysates(SCGH)in a rat model of type II diabetes induced by streptozotocin(STZ)combined with high-fat diet(HFD).Results showed that SCGH significantly reduced water intake,fasting blood glucose level and glycated hemoglobin level.Moreover,the oral glucose tolerance,insulin resistance and plasma lipid level in diabetic rats were also alleviated.Furthermore,histological analysis showed that SCGH effectively protected the tissue structure of liver.In addition,mechanism studies showed that SCGH improved glucose metabolism via activating the IRS/Akt signaling pathway,and promoted lipid metabolism via activating the AMPK signaling pathway.In summary,these findings suggested that SCGH have potential anti-diabetic effects by improving insulin resistance and lipid metabolism disorders.
基金supported by the Fok Ying-Tong Education Foundation (171024)Fundamental Research Funds for the Central Universities (201941005)Fundamental Research Funds for the Central Universities (862001013136)。
文摘Enzymatic hydrolysis has been widely used to produce bioactive hydrolysates from sea cucumber body wall.Here,inspired by the clarification of Apostichopus japonicus genome,we investigated the enzymatic hydrolysis of sea cucumber body wall by using the omics strategy.Shared proteins,including major yolk proteins,collagens,extracellular matrix glycoproteins and muscle proteins,were released from the body wall by different hydrolysis condition.A portfolio of 216 shared peptides were detected in the peptidome by papain with different hydrolysis time,while 32 shared peptides were detected in the peptidome by differing proteases.Unshared peptides and the relative abundance distribution profiles of shared peptides changed depending on hydrolysis approaches,indicating dynamic changes of peptidome during hydrolysis.Moreover,release of sulfated fucan and fucosylated chondroitin sulfate changed with the hydrolysis condition.The monitoring of dynamic enzymatic hydrolysis process at a molecular scale would contribute to production and quality control of sea cucumber hydrolysates.
基金supported by Scientific Research Project of Tianjin Education Commission(Nos.2020KJ091,2018KJ184)National Key Research and Development Program of China(No.2020YFD0900600)+1 种基金the Earmarked Fund for CARS(No.CARS-47)Tianjin Mariculture Industry Technology System Innovation Team Construction Project(No.ITTMRS2021000)。
文摘Sea cucumber detection is widely recognized as the key to automatic culture.The underwater light environment is complex and easily obscured by mud,sand,reefs,and other underwater organisms.To date,research on sea cucumber detection has mostly concentrated on the distinction between prospective objects and the background.However,the key to proper distinction is the effective extraction of sea cucumber feature information.In this study,the edge-enhanced scaling You Only Look Once-v4(YOLOv4)(ESYv4)was proposed for sea cucumber detection.By emphasizing the target features in a way that reduced the impact of different hues and brightness values underwater on the misjudgment of sea cucumbers,a bidirectional cascade network(BDCN)was used to extract the overall edge greyscale image in the image and add up the original RGB image as the detected input.Meanwhile,the YOLOv4 model for backbone detection is scaled,and the number of parameters is reduced to 48%of the original number of parameters.Validation results of 783images indicated that the detection precision of positive sea cucumber samples reached 0.941.This improvement reflects that the algorithm is more effective to improve the edge feature information of the target.It thus contributes to the automatic multi-objective detection of underwater sea cucumbers.
基金supported by National Natural Science Foundation of China(32072145)。
文摘Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols.Interestingly,our recent study found that intervention with sea cucumber sulfated sterols could significantly increase blood glucose levels of healthy mice in the presence of glucose,while cholesterol sulfate,as one of sulfated sterols,did not have the same effect.However,the exact mechanism of sulfated sterols on glucose metabolism is still unknown.In the present study,we investigated the potential mechanism by which sulfated sterols influenced blood glucose homeostasis in healthy mice.Results showed that intervention with sea cucumber sulfated sterols did not affect the levels of hormones related to glucose metabolism,while led to a significant decrease in the synthesis of liver glycogen and muscle glycogen.Besides,the expression of proteins associated with the promotion of gluconeogenesis dramatically increased in the mice intervened with sea cucumber sulfated sterols.These findings suggested that sea cucumber sulfated sterols might change blood glucose metabolism in healthy mice by reducing glycogenesis and promoting gluconeogenesis.