Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the sta...Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the statics of the observation noise are pre-given before the filtering process.Therefore,any unpredicted outliers in observation noise will decrease the stability of the filter.In view of this problem,improved CKF method with robustness is proposed.Multiple fading factors are introduced to rescale the observation noise covariance.Then the update stage of the filter can be autonomously tuned,and if there are outliers exist in the observations,the update should be less weighted.Under the Gaussian assumption of KF,the Mahalanobis distance of the innovation vector is supposed to be Chi-square distributed.Therefore a judging index based on Chi-square test is designed to detect the noise outliers,determining whether the fading tune are required.The proposed method is applied in the nonlinear alignment of SINS,and vehicle experiment proves the effective of the proposed method.展开更多
This paper focuses on the cubature Kalman filters (CKFs) for the nonlinear dynamic systems with additive process and measurement noise. As is well known, the heart of the CKF is the third-degree spherical–radial cu...This paper focuses on the cubature Kalman filters (CKFs) for the nonlinear dynamic systems with additive process and measurement noise. As is well known, the heart of the CKF is the third-degree spherical–radial cubature rule which makes it possible to compute the integrals encountered in nonlinear filtering problems. However, the rule not only requires computing the integration over an n-dimensional spherical region, but also combines the spherical cubature rule with the radial rule, thereby making it difficult to construct higher-degree CKFs. Moreover, the cubature formula used to construct the CKF has some drawbacks in computation. To address these issues, we present a more general class of the CKFs, which completely abandons the spherical–radial cubature rule. It can be shown that the conventional CKF is a special case of the proposed algorithm. The paper also includes a fifth-degree extension of the CKF. Two target tracking problems are used to verify the proposed algorithm. The results of both experiments demonstrate that the higher-degree CKF outperforms the conventional nonlinear filters in terms of accuracy.展开更多
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r...In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.展开更多
In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering base...In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.展开更多
基金This work is supported by National Natural Science Foundation of China under Grant No.41574069The Major National Projects of China under Grant No.GFZX0301040303.
文摘Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the statics of the observation noise are pre-given before the filtering process.Therefore,any unpredicted outliers in observation noise will decrease the stability of the filter.In view of this problem,improved CKF method with robustness is proposed.Multiple fading factors are introduced to rescale the observation noise covariance.Then the update stage of the filter can be autonomously tuned,and if there are outliers exist in the observations,the update should be less weighted.Under the Gaussian assumption of KF,the Mahalanobis distance of the innovation vector is supposed to be Chi-square distributed.Therefore a judging index based on Chi-square test is designed to detect the noise outliers,determining whether the fading tune are required.The proposed method is applied in the nonlinear alignment of SINS,and vehicle experiment proves the effective of the proposed method.
文摘This paper focuses on the cubature Kalman filters (CKFs) for the nonlinear dynamic systems with additive process and measurement noise. As is well known, the heart of the CKF is the third-degree spherical–radial cubature rule which makes it possible to compute the integrals encountered in nonlinear filtering problems. However, the rule not only requires computing the integration over an n-dimensional spherical region, but also combines the spherical cubature rule with the radial rule, thereby making it difficult to construct higher-degree CKFs. Moreover, the cubature formula used to construct the CKF has some drawbacks in computation. To address these issues, we present a more general class of the CKFs, which completely abandons the spherical–radial cubature rule. It can be shown that the conventional CKF is a special case of the proposed algorithm. The paper also includes a fifth-degree extension of the CKF. Two target tracking problems are used to verify the proposed algorithm. The results of both experiments demonstrate that the higher-degree CKF outperforms the conventional nonlinear filters in terms of accuracy.
基金Supported by the National Natural Science Foundation of China (50979017, NSFC60775060) the National High Technology Ship Research Project of China (GJCB09001)
文摘In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.
文摘In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.