Transition metal sulfides(TMSs)-based materials have been extensively investigated as effective non-noble catalysts for various applications.However,the exploration of TMSs-based catalysts for hydrogenation of nitro c...Transition metal sulfides(TMSs)-based materials have been extensively investigated as effective non-noble catalysts for various applications.However,the exploration of TMSs-based catalysts for hydrogenation of nitro compounds is limited.Herein,CoSx/NC catalysts were prepared by solvothermal sulfurization of ZIF-67,followed by high-temperature annealing(300–600℃)under NH3 atmosphere.It was found that the structures and compositions of the as-prepared CoSx/NC can be readily tuned by varying the annealing temperature.Particularly,CoSx/NC-500,which possesses higher degree of S defects and larger specific surface areas,can achieve high conversion,selectivity and stability for catalytic reduction of nitro compounds into amines under mild reaction conditions.展开更多
基金Projects(21636010,21878342)supported by the National Natural Science Foundation of ChinaProject(2019JJ50758)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(2019TP1001)supported by the Hunan Provincial Science and Technology Plan Project of ChinaProject(CX20190097)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Transition metal sulfides(TMSs)-based materials have been extensively investigated as effective non-noble catalysts for various applications.However,the exploration of TMSs-based catalysts for hydrogenation of nitro compounds is limited.Herein,CoSx/NC catalysts were prepared by solvothermal sulfurization of ZIF-67,followed by high-temperature annealing(300–600℃)under NH3 atmosphere.It was found that the structures and compositions of the as-prepared CoSx/NC can be readily tuned by varying the annealing temperature.Particularly,CoSx/NC-500,which possesses higher degree of S defects and larger specific surface areas,can achieve high conversion,selectivity and stability for catalytic reduction of nitro compounds into amines under mild reaction conditions.