期刊文献+
共找到18,238篇文章
< 1 2 250 >
每页显示 20 50 100
Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen
1
作者 Xuhui Ren Qianyu Zhang +4 位作者 Yun Tong Guorong Zhou Cong Lin Yanying Zhao Pengzuo Chen 《Journal of Energy Chemistry》 2025年第2期7-15,I0001,共10页
Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems.However,the development o... Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems.However,the development of highly-active bifunctional electrocatalysts remains a challenge.Herein,3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process,standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H_(2)from cyclohexanone and water.The membrane-free flow electrolyzer of Cu_(0.81)Ni_(0.19)/NF shows the superior electrooxidation performance of ketone-alcohol(KA)oil with high faradaic efficiencies of over 90%for adipic acid and H_(2),robust stability over 200 h as well as a high yield of 0.6 mmol h^(-1) for adipic acid at 100 mA cm^(-2).In-situ spectroscopy indicates the Cu_(0.81)Ni_(0.19)alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid,while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates.Moreover,the theoretical calculations confirm that the optimal electronic interaction,boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates,synergistically endows Cu_(0.81)Ni_(0.19)alloy with superior bifunctional performance. 展开更多
关键词 Cu_(0.81)Ni_(0.19)alloy Adipic acid hydrogen fuel Cyclohexanone oxidation reaction hydrogen evolution reaction
在线阅读 下载PDF
Technical and economic feasibility assessment for hybrid energy system electricity and hydrogen generation: A case study
2
作者 Paul C.Okonkwo Samuel Chukwujindu Nwokolo +7 位作者 El Manaa Barhoumi Ibrahim B.Mansir Usman Habu Taura Barun Kumar Das Ahmed Bahgat Radwan Wilfred Emori Ephraim Bonah Agyekum Khalid Al Kaaf 《Global Energy Interconnection》 2025年第1期62-81,共20页
Hydrogen is emerging as a promising alternative to fossil fuels in the transportation sector.This study evaluated the feasibility of estab-lishing hydrogen refueling stations in five cities in Oman,Duqm,Haima,Sur,Al B... Hydrogen is emerging as a promising alternative to fossil fuels in the transportation sector.This study evaluated the feasibility of estab-lishing hydrogen refueling stations in five cities in Oman,Duqm,Haima,Sur,Al Buraymi,and Salalah,using Hybrid Optimization of Multiple Electric Renewables(HOMER)software.Three hybrid energy systems,photovoltaic-wind turbine-battery,photovoltaic-battery,and wind turbine-battery were analyzed for each city.Results indicated that Duqm offers the lowest net present cost(NPC),levelized cost of energy,and levelized cost of hydrogen,making it the most cost-effective location.Additionally,Sensitivity analysis showed that as the life of electrolyzer increases during operation,the initial capital expenditure is distributed over a longer operational period,leading to a reduction in the NPC.More so,renewable energy systems produced no emissions which supports Oman’s mission target.This comprehensive analysis confirms the feasibility of establishing a hydrogen refueling station in Duqm,Oman,and highlights advanced optimization techniques’superior capability in designing cost-effective,sustainable energy systems. 展开更多
关键词 CITIES Economic indicator hydrogen production Optimization SOLAR
在线阅读 下载PDF
Selenate-based heterojunction with cobalt-nickel paired site for electrocatalytic oxidation of 5-hydroxymethylfurfural coupling water splitting to produce hydrogen
3
作者 Zhengru Yang Jia Hui +4 位作者 Wangxi Fan Pengcheng Liu Chunyong Zhang Shuang Dong Zhou Yang 《Journal of Energy Chemistry》 2025年第2期156-162,I0005,共8页
It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for elec... It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner. 展开更多
关键词 e-HMFOR FDCA Co-Ni paired site HETEROJUNCTION hydrogen evolution
在线阅读 下载PDF
Energy transfer enhanced photocatalytic hydrogen evolution in organic heterostructure nanoparticles via flash nanoprecipitation processing
4
作者 Miaojie Yu Weiwei Zhang +4 位作者 Xueyan Liu Guohui Zhao Jun Du Yongzhen Wu Wei-Hong Zhu 《Green Energy & Environment》 2025年第2期390-398,共9页
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b... Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration. 展开更多
关键词 Polymer photocatalysts NANOPARTICLES hydrogen evolution Forster resonance energy transfer
在线阅读 下载PDF
CO hydrogenation conversion driven by micro-environments of active sites over iron carbide catalysts
5
作者 Nan Song Xingxing Li +6 位作者 Ebtihal Abograin Wenyao Chen Junbo Cao Jing Zhang De Chen Xuezhi Duan Xinggui Zhou 《Green Energy & Environment》 2025年第2期367-373,共7页
Essentially clearing the structure-activity relationship between iron carbide catalysts involving multiple active centers to understand the reaction mechanism of CO hydrogenation conversion process is still a great ch... Essentially clearing the structure-activity relationship between iron carbide catalysts involving multiple active centers to understand the reaction mechanism of CO hydrogenation conversion process is still a great challenge.Here,two main micro-environment factors,namely electronic properties and geometrical effects were found to have an integrated effect on the mechanism of CO hydrogenation conversion,involving active sites on multiple crystal phases.The Bader charge of the surface Fe atoms on the active sites had a guiding effect on the CO activation pathway,while the spatial configuration of the active sites greatly affected the energy barriers of CO activation.Although the defective surfaces were more conducive to CO activation,the defective sites were not the only sites to dissociate CO,as CO always tended to dissociate in a wider area.This synergistic effect of the micro-environment also occurred during the CO conversion process.Surface C atoms on relatively flat configurations were more likely to form methane,while the electronic properties of the active sites could effectively describe the C-C coupling process,as well as distinguish the coupling mechanisms. 展开更多
关键词 MICRO-ENVIRONMENT CO hydrogenation conversion Electronic property Local environment Synergistic effect
在线阅读 下载PDF
MOF-derived Ni_(3)Fe/Ni/NiFe_(2)O_(4)@C for enhanced hydrogen storage performance of MgH_(2)
6
作者 Yangping Chen Bolin Sun +5 位作者 Guoqing Zhang Siyuan Ni Canbing Li Juxiong Tian Yanrui Zhang Xinxi Li 《Journal of Energy Chemistry》 2025年第2期333-344,I0008,共13页
Magnesium hydride(MgH_(2))is an important material for hydrogen(H_(2))storage and transportation owing to its high capacity and reversibility.However,its intrinsic properties have considerably limited its industrial a... Magnesium hydride(MgH_(2))is an important material for hydrogen(H_(2))storage and transportation owing to its high capacity and reversibility.However,its intrinsic properties have considerably limited its industrial application.In this study,the NiFe-800 catalyst as metal-organic framework(MOF)derivative was first utilized to promote the intrinsic properties of MgH_(2).Compared to pure MgH_(2),which releases1.24 wt%H_(2)in 60 min at 275℃,the MgH_(2)-10 NiFe-800 composite releases 5.85 wt%H_(2)in the same time.Even at a lower temperature of 250℃,the MgH_(2)-10 NiFe-800 composite releases 3.57 wt%H_(2),surpassing the performance of pure MgH_(2)at 275℃.Correspondingly,while pure MgH_(2)absorbs 2.08 wt%H_(2)in60 min at 125℃,the MgH_(2)-10 NiFe-800 composite absorbs 5.35 wt%H_(2)in just 1 min,Remarkably,the MgH_(2)-10 NiFe-800 composite absorbs 2.27 wt%H_(2)in 60 min at 50℃and 4.64 wt%H_(2)at 75℃.This indicates that MgH_(2)-10 NiFe-800 exhibits optimum performance with excellent kinetics at low temperatures.Furthermore,the capacity of the MgH_(2)-10 NiFe-800 composite remains largely stable after 10cycles.Moreover,the Mg_(2)Ni/Mg_(2)NiH_(4)acts as a"hydrogen pump",providing effective diffusion channels that enhance the kinetic process of the composite during cycling.Additionally,Fe0facilitates electron transfer and creates hydrogen diffusion channels and catalytic sites.Finally,carbon(C)effectively prevents particle agglomeration and maintains the cyclic stability of the composites.Consequently,the synergistic effects of Mg_(2)Ni/Mg_(2)NiH_(4),Fe^(0),and C considerably improve the kinetic properties and cycling stability of MgH_(2).This work offers an effective and valuable approach to improving the hydrogen storage efficiency in the commercial application of MgH_(2). 展开更多
关键词 hydrogen energy Solid statestorage MOF derivative MgH_(2) CATALYSTS
在线阅读 下载PDF
Unveiling the promotion role of ZnO on Zn-Al spinel oxide for CO_(2)hydrogenation
7
作者 Tongyao Wang Xinlong Yao +3 位作者 Lixin Liang Hongyu Chen Pan Gao Guangjin Hou 《Journal of Energy Chemistry》 2025年第1期18-25,共8页
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders... The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance. 展开更多
关键词 CO_(2)hydrogenation Spinel oxide ZNO Solid-state NMR
在线阅读 下载PDF
Co-production of hydrogen, oxygen, and electricity via an integrated solar-driven system with decoupled water electrolyzer and Na-Zn ion battery
8
作者 Fei Lv Longjie Liu +4 位作者 Jiazhe Wu Pengfei Wang Lixia Pan Dengwei Jing Yubin Chen 《Journal of Energy Chemistry》 2025年第1期621-627,共7页
Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems ... Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems is still in its infancy.Herein,an integrated hydrogen-oxygen (O_(2))-electricity co-production system featuring a bipolar membrane-assisted decoupled electrolyzer and a Na-Zn ion battery was established with sodium nickelhexacyanoferrate (NaNiHCF) and Zn^(2+)/Zn as dual redox electrodes.The decoupled electrolyzer enables to produce H_(2)and O_(2)in different time and space with almost 100%Faradaic efficiency at 100 mA cm^(-2).Then,the charged NaNiHCF and Zn electrodes after the electrolysis processes formed a Na-Zn ion battery,which can generate electricity with an average cell voltage of 1.75 V at 10 m A cm^(-2).By connecting Si photovoltaics with the modular electrochemical device,a well-matched solar driven system was built to convert the intermittent solar energy into hydrogen and electric energy with a solar to hydrogen-electricity efficiency of 16.7%,demonstrating the flexible storage and conversion of renewables. 展开更多
关键词 hydrogen ELECTRICITY Decoupled water electrolyzer Na-Zn ion battery Solar energy
在线阅读 下载PDF
Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range
9
作者 Zhihao Lei Sajjad Ali +18 位作者 CI Sathish MuhammadIbrar Ahmed Jiangtao Qu Rongkun Zheng Shibo Xi Xiaojiang Yu MBHBreese Chao Liu Jizhen Zhang Shuai Qi Xinwei Guan Vibin Perumalsamy Mohammed Fawaz Jae-Hun Yang Mohamed Bououdina Kazunari Domen Ajayan Vinu Liang Qiao Jiabao Yi 《Nano-Micro Letters》 2025年第5期525-539,共15页
Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrog... Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters. 展开更多
关键词 MXene hydrogen evolution reaction Single atom Two-dimensional nanosheets Density functional theory
在线阅读 下载PDF
Engineering nanoparticle structure at synergistic Ru-Na interface for integrated CO_(2)capture and hydrogenation
10
作者 Hanzi Liu Ling Cen +3 位作者 Xinlin Xie Lei Liu Zhao Sun Zhiqiang Sun 《Journal of Energy Chemistry》 2025年第1期779-791,共13页
The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of ... The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of adsorbent and catalyst.Herein,we engineered a series of RuNa/γ-Al_(2)O_(3)materials,varying the size of ruthenium from single atoms to clusters/nanoparticles.The coordination environment and structure sensitivity of ruthenium were quantitatively investigated at atomic scale.Our findings reveal that the reduced Ru nanoparticles,approximately 7.1 nm in diameter with a Ru-Ru coordination number of 5.9,exhibit high methane formation activity and selectivity at 340°C.The Ru-Na interfacial sites facilitate CO_(2)migration through a deoxygenation pathway,involving carbonate dissociation,carbonyl formation,and hydrogenation.In-situ experiments and theoretical calculations show that stable carbonyl intermediates on metallic Ru nanoparticles facilitate heterolytic C–O scission and C–H bonding,significantly lowering the energy barrier for activating stored CO_(2). 展开更多
关键词 CO_(2)capture hydrogenATION Ru-Na interface Dual functional material Reaction mechanism
在线阅读 下载PDF
Microdynamic modulation through Pt–O–Ni proton and electron“superhighway”for pH-universal hydrogen evolution
11
作者 Dewen Wang Yuting Chen +5 位作者 Bohan Yao Tian Meng Yanchao Xu Dongxu Jiao Zhicai Xing Xiurong Yang 《Journal of Energy Chemistry》 2025年第2期808-815,I0018,共9页
Optimizing the microdynamics in alkaline and neutral conditions is a significant but challenging task in developing pH-universal hydrogen evolution(HER)electrocatalysts.Herein,a unique Pt-O-Ni bridge has been construc... Optimizing the microdynamics in alkaline and neutral conditions is a significant but challenging task in developing pH-universal hydrogen evolution(HER)electrocatalysts.Herein,a unique Pt-O-Ni bridge has been constructed to alter the coordination and electronic environment between Pt nanoparticles(Pt_n)and nickel metaphosphate(NPO)substrate(Pt-NPO).Sufficient electron transfer from NPO to Pt_n to maintain an electron-rich environment and a low valence state of Pt_n.Furthermore,H*is produced from the H_(2)O dissociation on Ni site and then spillover toward Pt sites to bind into H_(2),which makes up for the insufficient H_(2)O dissociation ability of Pt in Volmer step.Pt-NPO exhibits long-term stability and only need the overpotentials of 22.3,33.0 and 30.5 mV to attain 10 mA cm^(-2)in alkaline,neutral and acidic media,respectively.The anion-exchange membrane(AEM)water electrolyzer catalyzed by Pt-NPO shows high water electrolysis performance that a cell voltage of 1.73 V is needed to obtain the current density of500 mA cm^(-2)in 1 M KOH at 80℃,at the same time maintains good stability for 350 h.The regulation strategy proposed in this work is helpful for the design and synthesis of highly efficient pH-universal HER electrocatalysts. 展开更多
关键词 hydrogen evolution reactions pH-universal HER electrocatalysts Metal-support interactions Microdynamics Atomic and electronic regulation
在线阅读 下载PDF
Few-shot learning for screening 2D Ga_(2)CoS_(4-x) supported single-atom catalysts for hydrogen production
12
作者 Nabil Khossossi Poulumi Dey 《Journal of Energy Chemistry》 2025年第1期665-673,共9页
Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-at... Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design. 展开更多
关键词 hydrogen production ELECTROCATALYST 2D material Density functional theory Machine learning Surface sulfur vacancy
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape
13
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways
14
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Fabrication of carbon-supported Al_(2)O_(3) nanoparticles via spontaneous cross-linking to enhance selective hydrogenation of furfural
15
作者 Weiwei Yu Xinbao Zhang +6 位作者 Hongyu Chen Yanan Wang Shaoguo Li Fucun Chen Zhenni Liu Xiujie Li Xiangxue Zhu 《Journal of Energy Chemistry》 2025年第1期612-620,共9页
Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,... Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C=C over C=O.Herein,a novel Al_(2)O_(3)/C-u hybrid catalyst,composed of N-modified dendritic carbon networks supporting Al_(2)O_(3)nanoparticles,was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate,Al3+and urea.The obtained carbon-supported Al_(2)O_(3)hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state.The introduction of urea enhances the surface N content,the ratio of pyrrolic N,and specific surface area of catalyst,leading to improved adsorption capacity of C=O and the accessibility of active sites.In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor,Al_(2)O_(3)/C-u catalyst achieved a 90%conversion of furfural with 98.0% selectivity to furfuryl alcohol,outperforming that of commercial γ-Al_(2)O_(3).Moreover,Al_(2)O_(3)/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al_(2)O_(3)nanoparticles.This work provides an innovative and facile strategy for fabrication of carbon-supported Al_(2)O_(3)hybrid catalysts with rich AlVspecies,serving as a high selective hydrogenation catalyst through MPV reaction route. 展开更多
关键词 Selective hydrogenation FURFURAL Furfuryl alcohol Cross-linking Carbon supported Al_(2)O_(3) MPV route
在线阅读 下载PDF
Constructing ether-rich and carboxylate hydrogen bonding sites in protic ionic liquids for efficient and simultaneous membrane separation of H_(2)S and CO_(2) from CH_(4)
16
作者 Ping Zhang Xingyun Ma +3 位作者 Zhuoheng Tu Xiaomin Zhang Xingbang Hu Youting Wu 《Green Energy & Environment》 2025年第3期560-572,共13页
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-... Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading. 展开更多
关键词 H_(2)S Protic ionic liquid Multi-site hydrogen bonding interaction Membrane separation Natural gas purification
在线阅读 下载PDF
Tailoring sub-5 nm Fe-doped CeO_(2)nanocrystals within confined spaces to boost photocatalytic hydrogen evolution under visible light
17
作者 Giuseppina Iervolino Olimpia Tammaro +4 位作者 Marco Fontana Bruno Masenelli Anne D.Lamirand Vincenzo Vaiano Serena Esposito 《Journal of Energy Chemistry》 2025年第2期263-277,I0007,共16页
This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production fr... This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes. 展开更多
关键词 Sub-5nm Fe-doped CeO_(2) hydrogen evolution Photocatalysis Visible light Reverse micelles Mesoporous CeO_(2)
在线阅读 下载PDF
Navigating the hydrogen prospect:A comprehensive review of sustainable source-based production technologies,transport solutions,advanced storage mechanisms,and CCUS integration 被引量:1
18
作者 Sehar Tasleem Chandra Sekhar Bongu +1 位作者 Mohan Raj Krishnan Edreese Housni Alsharaeh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期166-215,I0005,共51页
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable... The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale. 展开更多
关键词 Source-based hydrogen hydrogen utilization Carbon capture E-fuels hydrogen storage Transport infrastructure
在线阅读 下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:4
19
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane hydrogen generation HYDROLYSIS Cobalt phosphide nanosheets PHOTOCATALYSIS
在线阅读 下载PDF
Classification and technical target of water electrolysis for hydrogen production 被引量:3
20
作者 Kahyun Ham Sooan Bae Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期554-576,I0012,共24页
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro... Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology. 展开更多
关键词 Water electrolysis hydrogen production Technical target ELECTROCHEMISTRY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部