期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于复合深度Gauss回归网络的汽车ORS优化设计
1
作者 王文捷 孙奕 +1 位作者 刘钊 朱平 《汽车安全与节能学报》 北大核心 2025年第3期367-375,共9页
为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假... 为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假人伤害预测值构建优化目标函数,基于多组群乌鸦搜索算法开展ORS参数优化;使用工程仿真数据,验证方法的有效性。结果表明:相较于原始方案,本设计方案的假人伤害最高降低了30.77%,平均降低12.11%;用本方法可以预测假人多个部位的伤害值,并获取高质量的ORS设计方案。 展开更多
关键词 汽车碰撞 乘员约束系统(ORS) 假人伤害 数据驱动 复合深度Gauss回归网络 多组群乌鸦搜索算法
在线阅读 下载PDF
基于乌鸦搜索改进超螺旋滑模控制算法的防空火箭炮随动控制研究
2
作者 王海迪 赵永娟 +2 位作者 张鹏飞 米江勇 程文铮 《火炮发射与控制学报》 北大核心 2025年第2期37-43,共7页
针对由摩擦等非线性因素导致防空火箭炮随动系统控制精度降低的问题,提出一种基于乌鸦搜索改进超螺旋滑模控制方法。传统滑模控制器由于切换控制律中不连续符号函数的存在产生了较大抖振,通过设计超螺旋滑模控制方法将原有滑模控制律中... 针对由摩擦等非线性因素导致防空火箭炮随动系统控制精度降低的问题,提出一种基于乌鸦搜索改进超螺旋滑模控制方法。传统滑模控制器由于切换控制律中不连续符号函数的存在产生了较大抖振,通过设计超螺旋滑模控制方法将原有滑模控制律中符号函数改为连续函数,减少系统抖振,并设计乌鸦搜索算法优化超螺旋滑模控制器中切换增益,提高系统的控制精度和鲁棒性。仿真结果表明:基于乌鸦搜索改进超螺旋滑模控制器较传统滑模控制器减小了系统抖振,提高了系统位置跟踪精度,缩短了响应时间,对负载干扰具有较强的抑制能力。 展开更多
关键词 防空火箭炮 随动控制 超螺旋滑模控制 乌鸦搜索算法
在线阅读 下载PDF
震后危岩体边坡力学参数反演及余震动力响应分析
3
作者 卢栋 富国凯 +3 位作者 孙正军 代吉才 高晨翔 侯钦宽 《矿冶工程》 北大核心 2025年第2期34-40,46,共8页
以新疆金川矿业京希-巴拉克采区南帮边坡为工程背景,针对震后边坡力学参数弱化及余震下边坡稳定性评估问题,提出了基于乌鸦算法(CSA)优化的BP神经网络模型(CSA-BP),用于震后边坡力学参数反演,并结合离散元法对余震状态下危岩体边坡稳定... 以新疆金川矿业京希-巴拉克采区南帮边坡为工程背景,针对震后边坡力学参数弱化及余震下边坡稳定性评估问题,提出了基于乌鸦算法(CSA)优化的BP神经网络模型(CSA-BP),用于震后边坡力学参数反演,并结合离散元法对余震状态下危岩体边坡稳定性进行评价。结果表明,CSA-BP模型反演震后边坡力学参数,定量揭示了岩体弱化特征;5级余震下边坡中上部凝灰质砂岩位移显著,x方向位移远超竖向(z方向)位移,边坡失稳以水平滑移为主。CSA-BP模型能通过参数-动力耦合机制精准定位高风险区,可为震后边坡防护提供理论支撑。 展开更多
关键词 危岩体 边坡稳定性 岩石力学 参数反演 乌鸦算法 BP神经网络 地震响应 机器学习
在线阅读 下载PDF
基于新混合乌鸦搜索算法的置换流水车间调度 被引量:3
4
作者 闫红超 汤伟 姚斌 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1834-1846,共13页
为了更加有效地求解以最大完工时间最小化为目标的置换流水车间调度问题,提出一种新混合乌鸦搜索算法(NHCSA)。首先,对一种基于NEH的启发式算法进行了改进,在此基础上提出新的方法以改善初始种群的质量和多样性;其次,采用SPV(Smallest-P... 为了更加有效地求解以最大完工时间最小化为目标的置换流水车间调度问题,提出一种新混合乌鸦搜索算法(NHCSA)。首先,对一种基于NEH的启发式算法进行了改进,在此基础上提出新的方法以改善初始种群的质量和多样性;其次,采用SPV(Smallest-Position-Value)规则进行编码,使算法能够处理离散的调度问题;最后,针对迭代贪婪算法,提出了自动调整重插入工件范围的方法、引入了TB机制,并采用改进的迭代贪婪算法对最佳工件排序进行局部搜索,以提升算法收敛的精度。基于典型测试集进行了仿真测试,结果验证了所提算法的寻优能力和稳定性。尤其是在针对Rec19和Rec25算例的比较中,仅NHCSA取得了当前最优解,进一步证明了其优越性。 展开更多
关键词 乌鸦搜索算法 置换流水车间 种群初始化 局部搜索
在线阅读 下载PDF
基于改进乌鸦搜索算法评定圆度误差 被引量:1
5
作者 张志永 郑鹏 +1 位作者 王世强 郝用兴 《机床与液压》 北大核心 2024年第19期65-70,共6页
针对传统启发式智能优化算法评定圆度误差计算效率低且容易陷入局部最优解的问题,提出采用改进乌鸦搜索算法评定圆度误差。根据最小区域拟合准则建立乌鸦搜索算法评定圆度误差数学模型,并引入权重系数,提高算法全局搜索能力,同时设定最... 针对传统启发式智能优化算法评定圆度误差计算效率低且容易陷入局部最优解的问题,提出采用改进乌鸦搜索算法评定圆度误差。根据最小区域拟合准则建立乌鸦搜索算法评定圆度误差数学模型,并引入权重系数,提高算法全局搜索能力,同时设定最小二乘圆心附近为乌鸦搜索初始位置,提高算法搜索效率。最后通过模拟和实验验证了所提算法的准确性和高效性,并通过多组数据对比发现改进乌鸦搜索算法的全局搜索能力较遗传算法(GA)、粒子群算法(PSO)和传统乌鸦搜索算法(CSA)得到明显提升。 展开更多
关键词 圆度误差 乌鸦搜索算法 最小二乘法 最小区域法
在线阅读 下载PDF
基于CSA-PLS算法的养殖水体水质快速高光谱预测反演模型研究 被引量:3
6
作者 马启良 刘梅 +2 位作者 祁亨年 杨小明 原居林 《海洋与湖沼》 CAS CSCD 北大核心 2024年第2期375-385,共11页
养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜... 养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜索算法(CSA)结合偏最小二乘回归(PLSR)的高光谱特征波段筛选方法,快速构建回归模型,实现光谱数据的精准预测反演。以连片的养殖小区为研究对象,采集养殖水体样本并拍摄同时期的高光谱影像数据。首先对提取的采样点光谱数据利用多种数据变换方法分别预处理;其次利用这些数据,对水质指标总氮(TN)、氨氮(NH_(4)^(+)-N)、总磷(TP)和化学需氧量(COD)分别构建全波段的SVR和AdaBoost回归模型,同时与提出的CSA-PLS自动筛选波段方法和传统的连续投影算法(SPA)筛选波段后构建的模型进行比较分析;最后根据决定系数(R^(2))和均方根误差(REMS)选出适合各水质指标的最优模型。从实验结果可以看出,所提波段筛选方法的AdaBoost模型预测结果优于SVR和传统SPA方法提取特征波段后构建的模型,与全波段最优模型相比,在评价指标R^(2)和RMSE上TN提升了18.32%和10.73%;NH_(4)^(+)-N提升了17.42%和11.19%;COD提升了2.15%和2.54%。结果表明,基于CSA-PLS算法的光谱波段自动筛选方法结合AdaBoost构建的预测反演模型是有效、可行的,具有较高的精准度,为实现养殖水环境实时准确的预警调控提供了一种新的数据预测模型。 展开更多
关键词 高光谱数据 水质预测 乌鸦搜索算法 养殖水环境 集成学习
在线阅读 下载PDF
基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测 被引量:7
7
作者 邱文智 张文煜 +2 位作者 郭振海 赵晶 马可可 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期73-82,共10页
针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些... 针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些子序列分别建立预测模型,最后重构。对变分模态分解的子序列建立基于长短时记忆网络的深度学习模型预测,而残差序列进行二次分解后的子序列建立乌鸦搜索算法优化的组合预测模型预测。最后,对子序列进行重构并得到最终的预测结果。使用实际的风速观测资料开展模拟实验,结果表明:在3个风电场中,所提模型与其他模型相比平均相对误差分别提升了30.07%、37.56%和37.40%,验证了混合模型在超短期风速预测中的有效性和稳定性,以及在不同数据集上的泛化性能。 展开更多
关键词 风速 预测 长短时记忆 二次分解 乌鸦搜索算法 组合预测模型
在线阅读 下载PDF
结合改进ANFIS的车辆半主动悬架振动控制 被引量:2
8
作者 林蔚青 林秀芳 +1 位作者 赖联锋 杨燕珍 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第9期218-226,共9页
为改善MR阻尼器半主动悬架的减振效果,提出一种基于改进自适应神经模糊推理系统(ANFIS)的半主动控制方法。首先,针对MR阻尼器的逆向动力学模型难以精确确定的问题,采用改进乌鸦搜索算法(MCSA)对ANFIS进行优化,即分别用MCSA和最小二乘法... 为改善MR阻尼器半主动悬架的减振效果,提出一种基于改进自适应神经模糊推理系统(ANFIS)的半主动控制方法。首先,针对MR阻尼器的逆向动力学模型难以精确确定的问题,采用改进乌鸦搜索算法(MCSA)对ANFIS进行优化,即分别用MCSA和最小二乘法对ANFIS的前件参数和后件参数进行寻优,以克服标准ANFIS易于陷入局部最优解的缺陷。为了提高标准乌鸦搜索算法(CSA)的搜索精度,采用三角概率分布策略选择目标乌鸦,并对更新后的解实施反转变异操作。然后,根据悬架响应设计LQR控制器以计算理想控制力,并与改进逆向模型相结合,实现理想控制力与MR阻尼器输入控制信号之间的转化,从而调节阻尼力,实现车辆半主动悬架系统的振动控制。仿真结果表明:相较于GA-ANFIS和PSO-ANFIS,所提出的MCSA-ANFIS逆向建模方法具有更高的预测精度,使MR阻尼器的输入信号和阻尼力的预测精度分别提高17.49%和30.62%;以随机路面信号作为半主动悬架的激励,相较于被动控制和LQR-COC半主动控制,所提出的LQR-MCSA-ANFIS控制策略能使簧载质量加速度、悬架动行程和轮胎动载荷的均方根值分别下降12.37%、37.63%、30.70%以及6.64%、14.89%、17.27%。该半主动控制策略可为MR阻尼器悬架系统的减振研究提供参考。 展开更多
关键词 汽车悬架 半主动振动控制 自适应神经模糊推理系统 乌鸦搜索算法 LQR控制
在线阅读 下载PDF
考虑充电设施的无人机配送路径规划研究 被引量:2
9
作者 冯文静 卢福强 +2 位作者 王素欣 毕华玲 王雷震 《控制工程》 CSCD 北大核心 2024年第2期331-340,共10页
为解决偏远农村地区物流配送存在的困难,对无人机配送进行系统性规划,共分3个阶段:考虑到续航里程限度,建立了充电设施选址模型;从绿色路由的角度,以最小化总能耗作为目标,建立了考虑充电设施的无人机多包裹配送路径规划模型;根据实际... 为解决偏远农村地区物流配送存在的困难,对无人机配送进行系统性规划,共分3个阶段:考虑到续航里程限度,建立了充电设施选址模型;从绿色路由的角度,以最小化总能耗作为目标,建立了考虑充电设施的无人机多包裹配送路径规划模型;根据实际无人机数量进行任务分配,建立了任务分配模型。第一、三阶段的模型应用SCIP求解器求解。对第二阶段的混合整数非线性规划模型,设计了双层启发式算法CW节约-改进和修复乌鸦搜索算法(CW-IRCSA)求解。实验表明,对于洪格尔高勒镇的案例,充电设施的选址有利于节约资源,能得到能耗最低的配送路径,且任务分配合理;对于100个及以下的需求点规模,与CW节约-离散修复乌鸦搜索算法(CW-DRCSA)、CW节约-修复模拟退火(CW-RSA)相比,CW-IRCSA算法具有较高的求解精确度;在偏远地区,相对于传统卡车配送模式,无人机配送成本平均节约61.45%。 展开更多
关键词 物流工程 无人机配送 充电设施选址 能耗最低 乌鸦搜索算法
在线阅读 下载PDF
基于改进乌鸦搜索算法的无人艇新型路径规划策略 被引量:1
10
作者 林蔚青 林秀芳 +1 位作者 陈国童 黄惠 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期87-97,共11页
鉴于无人艇的实际航行需求,所规划的路径应满足顺滑性和经济性要求,为此提出一种基于改进乌鸦搜索算法和新型路径拟合方法的路径规划策略。文中提出一种新型路径拟合方法,用于优化转向点的数量并对转向点进行圆弧过渡处理,从而缩短路径... 鉴于无人艇的实际航行需求,所规划的路径应满足顺滑性和经济性要求,为此提出一种基于改进乌鸦搜索算法和新型路径拟合方法的路径规划策略。文中提出一种新型路径拟合方法,用于优化转向点的数量并对转向点进行圆弧过渡处理,从而缩短路径长度,并保证无人艇在航速稳定的情况下实现转向,在此基础上提出一种改进的乌鸦搜索算法,用于优化路径转向点的位置。算法的改进主要体现在3个方面:采用反向学习策略以提高初始种群质量及多样性;提出一种动态变化的意识概率以提高算法局部和全局的搜索能力;采用莱维飞行策略以改善搜索的方向性和有效性。仿真结果表明,所提出的新型路径拟合方法优于B样条曲线拟合方法和直线段拟合方法。迭代计算和方差分析结果表明:在优化新型拟合路径方面,所提出的改进乌鸦搜索算法相较于标准乌鸦搜索算法、差分进化算法和遗传算法具有更高的收敛精度和鲁棒性,能更高效地处理无人艇路径规划的实际问题。 展开更多
关键词 无人艇 路径规划 乌鸦搜索算法 反向学习 意识概率
在线阅读 下载PDF
一种以优秀个体记忆位置为导向的改进乌鸦搜索算法
11
作者 张宁 王勇 张伟 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1089-1098,共10页
为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只... 为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只在其贮藏食物的巢穴附近开展局部搜索活动.多数普通个体以优秀个体贮藏食物之巢穴为导向,在算法前期以较大步长进行全局探索,保持了种群的多样性;算法后期则以较短步长进行局部开发,使算法的全局探索能力和局部开发能力均得到了增强.通过12个基准函数和3个工程应用问题的数值实验,结果表明EICSA的全局优化能力得到了明显提高,在函数和工程应用问题优化中具有较快的全局收敛速度、较好的优化精度和稳定性. 展开更多
关键词 乌鸦搜索算法(CSA) 智能优化 优秀个体 普通个体 工程约束优化问题
在线阅读 下载PDF
基于全位姿测量优化的机器人精度研究 被引量:32
12
作者 温秀兰 康传帅 +3 位作者 宋爱国 乔贵方 王东霞 韩亚丽 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第7期81-89,共9页
随着机器人在高端制造业、航空航天、医疗等领域广泛应用,对其全位姿精度要求越来越高。采用激光跟踪仪对机器人末端执行器进行全位姿实测,研究基于几何参数标定的机器人精度提升方法。首先,建立了串联机器人(MDH)模型;其次,提出了基于... 随着机器人在高端制造业、航空航天、医疗等领域广泛应用,对其全位姿精度要求越来越高。采用激光跟踪仪对机器人末端执行器进行全位姿实测,研究基于几何参数标定的机器人精度提升方法。首先,建立了串联机器人(MDH)模型;其次,提出了基于拟随机序列产生初始位置的改进乌鸦搜索算法(ICSA)用于标定机器人几何参数,建立了用ICSA标定机器人几何参数目标函数的数学模型,给出了标定的详细步骤。最后,对Staubli Tx60工业机器人进行了实测标定,结果证实:采用提出方法能够快速标定机器人几何参数,标定后的机器人在工作空间内随机选择的测试点其平均绝对位置和姿态误差由标定前的0. 309 6 mm和0. 232 2°减小为标定后的0. 092 6 mm和0. 082 9°,精度大幅提升。该方法简单易实现,效率高,鲁棒性强,稳定性好,适宜于在位置和姿态均有高精度要求的机器人中推广应用。 展开更多
关键词 机器人 全位姿测量 精度 几何参数标定 改进乌鸦搜索算法 拟随机序列
在线阅读 下载PDF
基于变因子加权学习与邻代维度交叉策略的改进CSA算法 被引量:19
13
作者 赵世杰 高雷阜 +1 位作者 于冬梅 徒君 《电子学报》 EI CAS CSCD 北大核心 2019年第1期40-48,共9页
针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长... 针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低、局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长度),利用多个体的变因子加权学习机制保证子代个体同时继承跟随乌鸦与上代最优个体的位置信息以避免单个体继承的过快种群同化并减小陷入局部极值的风险;同时构建历史最优个体的邻代维度交叉策略,并按维度绝对差异大的优先替换原则更新最优个体位置,以保留历代最优维度信息并提高算法的局部极值逃逸能力.数值实验结果分别验证了模型参数对CSA算法性能的一定影响,加权学习因子不同递变形式对ICSA算法性能改善的有效性与差异性以及改进算法的优越寻优性能. 展开更多
关键词 智能优化算法 乌鸦搜索算法 变因子加权学习机制 邻代维度交叉策略 基准测试函数
在线阅读 下载PDF
基于改进乌鸦算法和ESN神经网络的短期风电功率预测 被引量:28
14
作者 琚垚 祁林 刘帅 《电力系统保护与控制》 EI CSCD 北大核心 2019年第4期58-64,共7页
精确的短期风电功率预测对于提升电力系统经济稳定运行十分重要。为了克服传统的神经网络在参数选取中容易受主观因素影响和陷入局部最优的不足,提出一种基于改进乌鸦算法(ICSA)优化回声状态神经网络(ESN)参数的短期风电功率组合预测方... 精确的短期风电功率预测对于提升电力系统经济稳定运行十分重要。为了克服传统的神经网络在参数选取中容易受主观因素影响和陷入局部最优的不足,提出一种基于改进乌鸦算法(ICSA)优化回声状态神经网络(ESN)参数的短期风电功率组合预测方法。在算法寻优初期引入Lévy飞行机制增强搜索效率,而在迭代后期加入高斯函数,对进化后的全部轨迹进行相应的调整,保证算法的全局寻优和逐次逼近能力;通过改进的CSA算法对ESN神经网络输出层连接权值矩阵进行优化以提高网络的训练效率。最后利用两组实验数据对预测模型进行了有效性验证,结果表明,所提算法能有效应对风电功率时序的随机性和不确定性特征,具有更高的建模精度和更快的收敛速度。 展开更多
关键词 乌鸦算法 Lévy飞行 ESN神经网络 高斯函数 风电功率预测
在线阅读 下载PDF
基于乌鸦搜索算法的孤岛微网多目标优化调度 被引量:27
15
作者 黄景光 陈波 +3 位作者 林湘宁 吴巍 于楠 叶元 《高压电器》 CAS CSCD 北大核心 2020年第1期162-168,共7页
为促进孤岛微网中可再生能源的消纳,减小负荷峰谷差。文中在孤岛微网中引入价格型需求响应,以微网运行成本最低和柴油发电机出力最少为目标,综合考虑功率平衡、抽水蓄能机组启停与工况转换等约束条件,构建了含风电、抽水蓄能和柴油发电... 为促进孤岛微网中可再生能源的消纳,减小负荷峰谷差。文中在孤岛微网中引入价格型需求响应,以微网运行成本最低和柴油发电机出力最少为目标,综合考虑功率平衡、抽水蓄能机组启停与工况转换等约束条件,构建了含风电、抽水蓄能和柴油发电机的孤岛微网多目标优化调度模型,并采用乌鸦搜索算法进行求解。仿真结果表明:在孤岛微网中引入价格型需求响应能有效削减负荷峰谷差,经济效益显著。与粒子群优化算法相比,乌鸦搜素算法在收敛速度和全局寻优的能力上具有明显优势。 展开更多
关键词 乌鸦搜索算法 需求响应 孤岛微网 优化调度
在线阅读 下载PDF
基于极点对称模态分解-分散熵和改进乌鸦搜索算法-核极限学习机的短期负荷区间预测 被引量:11
16
作者 岳有军 刘英翰 +1 位作者 赵辉 王红君 《科学技术与工程》 北大核心 2020年第22期9036-9042,共7页
针对确定性负荷点预测存在不同程度误差及难以反映电力需求不确定性的问题,提出一种基于极点对称模态分解(extreme-point symmetric mode decomposition,ESMD)-分散熵(dispersion entropy,DE)和改进乌鸦搜索算法(improved crow search a... 针对确定性负荷点预测存在不同程度误差及难以反映电力需求不确定性的问题,提出一种基于极点对称模态分解(extreme-point symmetric mode decomposition,ESMD)-分散熵(dispersion entropy,DE)和改进乌鸦搜索算法(improved crow search algorithm,ICSA)优化核极限学习机的短期负荷区间预测模型。首先用ESMD将原始负荷时间序列分解为多个特征互异的子序列,降低了原始非平稳负荷序列对预测结果的影响,并计算各子序列的分散熵,将熵值相近的子序列重组为新序列以降低计算规模;其次,基于上下限估计法,利用ICSA算法对核极限学习机(kernel extreme learning machine,KELM)输出权值进行优化,得到最优预测区间上下限,并以此分别对各新序列进行区间预测;最后将预测结果叠加得到最终的预测区间。仿真结果表明,所提模型有效提高了负荷预测区间的质量,为电力系统决策工作提供有力支持。 展开更多
关键词 负荷区间预测 极点对称模态分解 分散熵 乌鸦搜索算法 核极限学习机
在线阅读 下载PDF
用户特征聚类和ICSA-SVR台区负荷预测 被引量:5
17
作者 滕永兴 杨霖 +2 位作者 钟睿君 闵诚 李祺 《中国测试》 CAS 北大核心 2022年第7期107-113,共7页
为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建... 为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建ICSA-SVR模型,对各类用户的用电负荷进行回归预测,进而叠加得到台区负荷预测结果。结果显示,台区内不同类型用户之间的用电特性差异较大,可分冬季单峰型、夏季单峰型和冬夏双峰型三类,各台区负荷呈现不同的季节性波动;该方法能够明显提升台区负荷预测精度,预测结果可对电力生产运营提供指导。 展开更多
关键词 低压台区 负荷预测 特征聚类 乌鸦搜索算法 支持向量回归
在线阅读 下载PDF
基于ReliefF和改进乌鸦搜索优化的并行入侵检测方法 被引量:10
18
作者 马超 《计算机应用研究》 CSCD 北大核心 2019年第10期3063-3068,共6页
网络数据量的增加导致计算复杂度和时间复杂度增加,为提高网络入侵检测的精度与速度,提出一种新的入侵检测方法RICSA-KELM。首先采用ReliefF过滤法除去无关特征和噪声,降低特征维数;然后基于改进乌鸦搜索算法(ICSA,采用封装法)进行最优... 网络数据量的增加导致计算复杂度和时间复杂度增加,为提高网络入侵检测的精度与速度,提出一种新的入侵检测方法RICSA-KELM。首先采用ReliefF过滤法除去无关特征和噪声,降低特征维数;然后基于改进乌鸦搜索算法(ICSA,采用封装法)进行最优特征子集选择,并同步实现核极限学习机(KELM)分类器的参数优化。设计的线性加权目标函数在考虑最大分类精度的同时,尽可能减少误报率以及特征子集数量。此外,提出了基于多核平台的多线程并行计算方法,进一步优化模型运算方式,提高了计算效率。实验采用KDD99和UNSW-NB15数据集对RICSA-KELM性能进行测试和分析。实验结果表明,提出的模型优于SVM、ELM、KNN等方法,检测准确率高、检测效率快、误报率低,是一种有效的网络入侵检测方法。 展开更多
关键词 乌鸦搜索算法 入侵检测 并行计算 核极限学习机 RELIEFF
在线阅读 下载PDF
多目标自适应和声搜索算法 被引量:11
19
作者 陈莹珍 高岳林 《计算机工程与应用》 CSCD 北大核心 2011年第31期108-111,174,共5页
提出了一种利用Pareto支配来求解多目标优化问题的自适应和声搜索算法(MOSAHS)。该算法利用外部种群来保存非支配解,为了保持非支配解的多样性,提出了一种基于拥挤度的删除策略,这个策略能较好地度量个体的拥挤程度。用5个标准测试函数... 提出了一种利用Pareto支配来求解多目标优化问题的自适应和声搜索算法(MOSAHS)。该算法利用外部种群来保存非支配解,为了保持非支配解的多样性,提出了一种基于拥挤度的删除策略,这个策略能较好地度量个体的拥挤程度。用5个标准测试函数对其进行测试,并与其他多目标优化算法相比较。实验结果表明,与其他的算法相比,提出的算法在逼近性和均匀性两方面都有很好的表现,是一种有效的多目标和声搜索算法。 展开更多
关键词 多目标优化 和声搜索算法 拥挤度
在线阅读 下载PDF
基于FCBF特征选择和集成优化学习的基因表达数据分类算法 被引量:6
20
作者 马超 《计算机应用研究》 CSCD 北大核心 2019年第10期2986-2991,共6页
针对微阵列基因表达数据高维小样本、高冗余且高噪声的问题,提出一种基于FCBF特征选择和集成优化学习的分类算法FICS-EKELM。首先使用快速关联过滤方法FCBF滤除部分不相关特征和噪声,找出与类别相关性较高的特征集合;其次,运用抽样技术... 针对微阵列基因表达数据高维小样本、高冗余且高噪声的问题,提出一种基于FCBF特征选择和集成优化学习的分类算法FICS-EKELM。首先使用快速关联过滤方法FCBF滤除部分不相关特征和噪声,找出与类别相关性较高的特征集合;其次,运用抽样技术生成多个样本子集,在每个训练子集上利用改进乌鸦搜索算法同步实现最优特征子集选择和核极限学习机KELM分类器参数优化;然后基于基分类器构建集成分类模型对目标数据进行分类识别;此外运用多核平台多线程并行方式进一步提高算法计算效率。在六组基因数据集上的实验结果表明,该算法不仅能用较少特征基因达到较优的分类效果,并且分类结果显著高于已有和相似方法,是一种有效的高维数据分类方法。 展开更多
关键词 特征选择 集成学习 微阵列基因表达数据 乌鸦搜索算法 核极限学习机
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部