期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
1
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷积神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
采用多尺度特征增强的路面病害检测模型 被引量:2
2
作者 胡鹏 夏晓华 +3 位作者 钟预全 段智威 姚运仕 成高立 《西安交通大学学报》 北大核心 2025年第2期156-169,共14页
针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,... 针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,以实现更大范围上下文信息的捕捉,并保留更多的空间信息;设计多路径特征融合网络,通过多分支和跳跃连接实现跨层级的特征捕捉,并减少特征融合过程中的信息丢失;采用K-means聚类算法结合交叉比获得合理的瞄点框;在损失函数中,设计一种面积惩罚项并设置下降梯度,提高预测框回归精度与效率;通过引入跨通道交互的高效注意力实现模型重要通道间的交互。实验结果表明:所提模型的检测精度比原模型YOLOv5s提高了4.0%;与Faster R-CNN、CenterNet等经典模型和YOLOv8s、YOLOv7n-tiny等先进模型相比,检测精度提高了1.0%~17.9%。模型经TensorRT加速引擎优化加速后,在NVIDIA Jetson TX2与NVIDIA Jetson Nano平台上的检测速率提高近1倍,同时不影响检测精度。 展开更多
关键词 路面病害检测 多尺度特征增强 混合空洞卷积 特征融合网络 高效通道注意力 嵌入式平台
在线阅读 下载PDF
基于YOLOv10n的BGA锡球缺陷检测算法
3
作者 胡彬 朱文彬 +1 位作者 王鸣昕 朱晓春 《半导体技术》 北大核心 2025年第10期1067-1077,共11页
球栅阵列(BGA)锡球缺陷的高效检测是保障芯片质量的核心环节,而缺陷样本的稀缺性为基于深度学习方法的有效训练带来了挑战。设计了一种基于前景-背景加权融合的数据增强方法,有效缓解了训练样本的不足,并提出了一种基于YOLOv10n的BGA锡... 球栅阵列(BGA)锡球缺陷的高效检测是保障芯片质量的核心环节,而缺陷样本的稀缺性为基于深度学习方法的有效训练带来了挑战。设计了一种基于前景-背景加权融合的数据增强方法,有效缓解了训练样本的不足,并提出了一种基于YOLOv10n的BGA锡球缺陷检测算法EMP-YOLOv10n。首先,构建跨尺度高效特征融合网络(EffiFuseNet),在减少参数量(Params)的同时,增强对缺陷细节的捕捉能力;其次,引入一种新型C2f_MLCA模块,以提高对小目标缺陷的检测精度;最后,提出一种轻量化检测头(P-Detect)模块,在保留有效信息的同时显著减小了计算量。实验结果显示,与基准模型YOLOv10n相比,EMP-YOLOv10n的平均精度均值(mAP)提高了3.4%,召回率(R)提高了6%,Params减少了42.3%,计算复杂度降低了34.1%,这表明该模型有效提高了基于深度学习的BGA锡球缺陷检测的准确性和实时性。 展开更多
关键词 球栅阵列(BGA) 锡球 缺陷检测 数据增强 跨尺度高效特征融合网络(effifusenet) C2f_MLCA模块 小目标检测
在线阅读 下载PDF
基于Stair−YOLOv7−tiny的煤矿井下输送带异物检测 被引量:3
4
作者 梅晓虎 吕小强 雷萌 《工矿自动化》 CSCD 北大核心 2024年第8期99-104,111,共7页
针对现有煤矿井下输送带异物检测方法应对复杂场景适应性差、无法满足实时性和轻量化要求、处理尺寸差异较大异物时表现不佳的问题,基于轻量化YOLOv7−tiny模型进行改进,提出了一种Stair−YOLOv7−tiny模型,并将其用于煤矿井下输送带异物... 针对现有煤矿井下输送带异物检测方法应对复杂场景适应性差、无法满足实时性和轻量化要求、处理尺寸差异较大异物时表现不佳的问题,基于轻量化YOLOv7−tiny模型进行改进,提出了一种Stair−YOLOv7−tiny模型,并将其用于煤矿井下输送带异物检测。该模型在高效层聚合网络(ELAN)模块中添加特征拼接单元,形成阶梯ELAN(Stair−ELAN)模块,将不同层级的低维特征与高维特征进行融合,加强了特征层级间的直接联系,提升了信息捕获能力,增强了模型对不同尺度目标和复杂场景的适应性;针对检测头引入阶梯特征融合(Stair−fusion),形成阶梯检测头(Stair−head)模块,通过逐层融合不同分辨率的检测头特征,增强了中低分辨率检测头的特征表达能力,实现了特征信息的互补。实验结果表明:Stair−YOLOv7−tiny模型在输送带异物开源数据集CUMT−BelT上的检测效果优于CBAM−YOLOv5,YOLOv7−tiny及其轻量化模型,准确率、平均精度均值、召回率和精确率分别达98.5%,81.0%,82.2%和88.4%,检测速度为192.3帧/s;在某矿井下输送带监控视频分析中,Stair−YOLOv7−tiny模型未出现漏检或误检,实现了输送带异物的准确检测。 展开更多
关键词 输送带异物检测 YOLOv7−tiny 多尺度目标检测 Stair−fusion 高效层聚合网络 检测头
在线阅读 下载PDF
融合多阶特征和跨空间注意力的双向遥感图像配准 被引量:2
5
作者 邓修涵 陈颖 +2 位作者 李翔 倪力政 高寒 《激光杂志》 北大核心 2024年第12期116-124,共9页
针对遥感影像特征难以提取,现有的图像配准框架配准精度和效率较低等问题,提出一种融合多阶特征和跨空间注意力的双向遥感图像配准方法。首先设计跨空间注意力,将多尺度精确的空间结构信息保留到通道中,将其嵌入高效网络中从而重点捕获... 针对遥感影像特征难以提取,现有的图像配准框架配准精度和效率较低等问题,提出一种融合多阶特征和跨空间注意力的双向遥感图像配准方法。首先设计跨空间注意力,将多尺度精确的空间结构信息保留到通道中,将其嵌入高效网络中从而重点捕获图像的关键信息。其次提出多阶特征自适应融合模块应用到特征提取中,自适应融合低阶和高阶特征以提高配准的精度。最后设计增强特征匹配方法,更加精确地分析特征的相似性,建立双向匹配关系同时采用二次仿射变换来提高配准的精确性和可靠性。本方法在Aerial Image数据集上α=0.05(α:归一化距离阈值)时获得了94.0%的正确关键点概率(PCK),平均配准时间达到0.93 s。结果表明,该方法显著提高了多源异构的遥感图像的配准精度和效率。 展开更多
关键词 遥感图像配准 高效网络 注意力 特征融合 图像匹配
在线阅读 下载PDF
基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法 被引量:2
6
作者 陈嘉伟 季天瑶 +1 位作者 梅广 刘紫罡 《电网技术》 EI CSCD 北大核心 2024年第5期2074-2083,I0072,共11页
随着建筑物能源消耗的不断升高,高精度与高泛化能力的非侵入式负荷监测技术的研究具有重大意义。针对当前负荷分解方法存在的问题,提出了一种基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法。将实例-批归一化网络与U形网络... 随着建筑物能源消耗的不断升高,高精度与高泛化能力的非侵入式负荷监测技术的研究具有重大意义。针对当前负荷分解方法存在的问题,提出了一种基于多尺度特征融合与多任务学习框架的非侵入式负荷监测方法。将实例-批归一化网络与U形网络结合,提取总负荷数据的上下文信息,并利用跨越连接实现对不同尺度的细节特征与全局特征的融合。针对多特征特点,引入高效通道注意力网络,使模型聚焦重要特征。引入多任务学习框架与后处理操作,去除输出的假阳性片段,实现对目标电器的精准识别。将所提模型与几种代表性模型在UK-DALE(UK domestic appliance-level electricity)数据集与REDD(reference energy disaggregation data set)上进行对比实验,结果表明,所提模型的性能优于对比模型,具有出色的负荷分解能力与状态识别能力。 展开更多
关键词 非侵入式负荷监测 实例-批归一化网络 多尺度特征融合 高效通道注意力网络 多任务学习
在线阅读 下载PDF
基于高效通道注意力机制与多尺度特征融合的烟丝图像识别方法研究 被引量:3
7
作者 刘江鹏 牛群峰 +3 位作者 靳毅 陈霞 王莉 袁强 《河南农业科学》 北大核心 2022年第11期145-154,共10页
针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图... 针对现有方法在识别烟丝类型中泛化能力差、准确率低的问题,提出了一种基于高效通道注意力机制与多尺度特征融合的烟丝类型识别方法。对采集的梗丝、膨胀叶丝、叶丝和再造烟丝4类烟丝图像进行降噪处理,处理后的图像经K-means聚类得到图像的前景和后景并完成分割,提高输入图像的抗环境干扰能力和特征提取能力。在Inception-ResNet-V2网络中引入高效通道注意力机制,加强模型提取特征的能力;同时,将改进后的模块输出的特征图进行多尺度融合,增加特征代表性,降低过拟合风险。最后,在比较收敛性和准确性时,用PReLU和AdaBound代替了ReLU激活函数和Adam优化器。结果表明,提出的算法具有较好的泛化能力,能实现4类烟丝高效识别,最终识别精度为97.23%,单幅图像的检测时间为0.107 s。 展开更多
关键词 烟丝 K-MEANS算法 Inception网络 高效通道注意力机制 多尺度特征融合
在线阅读 下载PDF
改进DBNet与CRNN的面标识别方法 被引量:2
8
作者 董维振 陈燕 梁海玲 《计算机工程与设计》 北大核心 2023年第1期116-124,共9页
为解决板坯喷涂面标实时识别问题,构建文本检测和识别模型。改进可微二值化算法网络,引入高效通道注意力模块SENet,进行自适应空间特征融合(ASFF),增强特征金字塔预测多尺度目标的能力。识别模型改进卷积递归神经网络的VGG网络,将卷积... 为解决板坯喷涂面标实时识别问题,构建文本检测和识别模型。改进可微二值化算法网络,引入高效通道注意力模块SENet,进行自适应空间特征融合(ASFF),增强特征金字塔预测多尺度目标的能力。识别模型改进卷积递归神经网络的VGG网络,将卷积与循环神经网络联合训练。实验结果表明,检测模型的精确率、召回率和调和平均值达到93.30%、86.45%、89.85%,提升显著;识别模型平均准确率达到86.01%,精度提升4.99%。模型满足实时与准确性要求。 展开更多
关键词 板坯喷涂面标 可微二值化 高效通道注意力机制 特征金字塔 自适应空间特征融合 卷积递归神经网络 联合训练 反向传播 迁移学习
在线阅读 下载PDF
基于深度学习的脊椎CT图像分割 被引量:4
9
作者 黄昆 张俊华 普钟 《电子测量技术》 北大核心 2022年第20期151-159,共9页
脊椎CT图像分割是脊椎三维重建可视化的关键。针对脊椎CT图像中脊椎边缘模糊,结构复杂,形状多变等问题,基于深度学习方法提出一种双解码器网络。该网络在编码解码网络U-Net结构基础上增加了一条结构相同的并行解码分支,两个解码分支可... 脊椎CT图像分割是脊椎三维重建可视化的关键。针对脊椎CT图像中脊椎边缘模糊,结构复杂,形状多变等问题,基于深度学习方法提出一种双解码器网络。该网络在编码解码网络U-Net结构基础上增加了一条结构相同的并行解码分支,两个解码分支可以互补地提取图像特征。并且,在编码与解码之间加入双重特征融合模块,解决网络在下采样和上采样过程中造成的语义信息丢失问题。同时用密连混合卷积模块代替原始卷积模块,提高网络对多尺度特征的提取能力。此外加入高效注意力模块,使网络在空间上注重学习感兴趣区域,在通道上抑制无关信息。在CSI2014公开数据集上进行测试,Dice系数达到0.970,Jaccard系数达到0.945,召回率达到0.962。实验结果表明,该网络能够提高脊椎分割精度,具有较好的泛化能力,可以满足临床脊椎CT图像分割需求。 展开更多
关键词 脊椎分割 深度学习 双解码器网络 双重特征融合模块 密连混合卷积模块 高效注意力模块
在线阅读 下载PDF
基于轻量级网络的自然场景下的文本检测 被引量:1
10
作者 孙婧婧 张青林 《电子测量技术》 2020年第8期101-107,共7页
由于自然场景中的文本的提取与理解具有重要的现实应用意义,如盲人导航,图片筛选等,针对传统文本检测步骤繁多、效率低下和深度学习复杂度高的问题,本文提出了一种基于轻量级网络的自然场景下的文本检测。该网络基于回归的思想使用全卷... 由于自然场景中的文本的提取与理解具有重要的现实应用意义,如盲人导航,图片筛选等,针对传统文本检测步骤繁多、效率低下和深度学习复杂度高的问题,本文提出了一种基于轻量级网络的自然场景下的文本检测。该网络基于回归的思想使用全卷积网络结构进行不同层次的特征的融合,快速且准确的定位出文本区域,一步输出预测框。网络采用U-net结构提取卷积特征和预测文本,可以准确定位图片中的小文本行,在分辨率低的图片,定位图片中的文本行方面,也有很好的效果。该方法使用非极大值抑制消除多余的文本框,可以用于不同语言,不同方向的文本定位。在数据集ICDAR2015取得了不错的效果。 展开更多
关键词 文本检测 自然场景 轻量级网络 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部