Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due t...Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))w...Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.展开更多
The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6%...The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.展开更多
Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl...UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.展开更多
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther...The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.展开更多
Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and...Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.展开更多
Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-...Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.展开更多
By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large dev...By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork.Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer.However,there is little research on mechanical behaviors of the polyurethane shell structure.This paper presents experimental studies on an inflated fabric model with and without polyurethane,including relief pressure tests,vertical loading tests and horizontal loading tests.Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork.Compared with the experiment,a numerical model using shell layered finite elements has a good prediction.The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell,especially dealing with the advance of shape-control.展开更多
To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a com...To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a common effective approach.For this purpose,polyurethane(PU),a typical inert binder,was mixed with nitrocellulose(NC)as an energetic polymer.Numerous composite solid propellant compositions based on AN and NC-modified polyurethane binder with different NC ratios were prepared.The prepared formulations were characterized using Fourier transform infrared spectroscopy(FTIR),RAMAN spectroscopy,X-ray diffraction(XRD),electron densimetry,thermogravimetric(TG)analysis,and differential scanning calorimetry(DSC).A kinetic study was then performed using the iterative KissingerAkahira-Sunose(It-KAS),Flynn-Wall-Ozawa(It-FWO),and non-linear Vyazovkin integral with compensation effect(VYA/CE)methods.The theoretical performances,such as theoretical specific impulse,adiabatic flame temperature,and ideal exhaust gaseous species,were also determined using the NASA Lewis Code,Chemical Equilibrium with Application(CEA).Spectroscopic examinations revealed the existence of NC and full polymerization of PU in the prepared propellants.According to density tests,the density of the propellant increases as the nitrocellulose component increases.According to the thermal analysis and kinetics study,the increase in NC content catalyzed the thermal decomposition of the AN-based composite solid propellants.Based on the theoretical study,increasing the amount of NC in the propellant increased the specific impulse and,as a result,the overall performance.展开更多
Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in th...Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in the GAP matrix beside the addition of dibutyltin dilaurate(DBTDL)to ensure cross-linking and curing completion of the prepared CSRP.The viscosity and hardness of all prepared formulations were monitored continuously during the curing process.The mechanical characteristics of cured samples were tested.The burning rate at operating pressure and specific impulse were measured,while the theoretical specific impulse(I sp)was calculated by ICT code and compared with the measured results.According to the results,DOA was found to be a suitable plasticizer for GAP when using in propellant.The mechanical properties of CSRP with 25%GAP can produce the optimum mechanical behavior,which is close to that of HTPB-based CSRP.The optimum GAP-based formulation is one candidate to replace the traditional HTPB-based CSRP with high burning rate for some applications.展开更多
Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a react...Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a reactive system.A two-part polyurethane film was used as a model system.The results showed that the height ratio of ring mode signal in urea and C—O signal in polyester polyol can be used to calculate the ratio of the two reactants.The assignments of the peaks were studied by in-situ reaction monitoring with moisture level changes and deuteration methods.The applicable conditions of this calibration curves were also discussed.展开更多
文摘Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金Project(42076039)supported by the National Natural Science Foundation of ChinaProject(ZR2020ME016)supported by the Natural Science Foundation of Shandong Province,ChinaProject(202165004)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.
文摘The effect of microwave treatment on the tensile properties of treated sugar palm fibre with 6% NaOH reinforced thermoplastic polyurethane composites was investigated. Firstly, the sugar palm fibres were treated by 6% alkali solution. Then, microwave treatment was used to treat the alkali treated sugar palm fibres. Three types of temperatures(i.e. 70, 80 and 90℃) were applied in microwave treatment. The extruder and hot press machines were used to mixing the sugar palm fibres and polyurethane resin, and fabricate the composites. Tensile properties(i.e. tensile strength, tensile modulus and elongation at break) were studied by following the ASTM D-638 standard. The highest tensile strength was recorded 18.42 MPa with microwave temperature at 70℃ and 6% alkali pre-treatment. Therefore, the temperature 70℃ of microwave treatment may consider the best degree cent grate.
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
文摘UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.
基金Universiti Kuala Lumpur(UniKL)the Ministry of Education Malaysia for providing the scholarship award+1 种基金financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from the Ministry of Education,Malaysia。
文摘The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
基金Projects(51178263,51378307)supported by the National Natural Science Foundation of China
文摘By spraying concrete on inner surface,air-supported fabric structures can be used as formwork to construct reinforced concrete shell structures.The fabric formwork has the finished form of concrete structure.Large deviation from the desired shape of concrete shells still remains as central problem due to dead weight of concrete and less stiffness of fabric formwork.Polyurethane can be used not only as a bonding layer between fabrics and concrete but also as an additional stiffening layer.However,there is little research on mechanical behaviors of the polyurethane shell structure.This paper presents experimental studies on an inflated fabric model with and without polyurethane,including relief pressure tests,vertical loading tests and horizontal loading tests.Experimental results show that the additional polyurethane layer can significantly enhance the stiffness of the fabric formwork.Compared with the experiment,a numerical model using shell layered finite elements has a good prediction.The reinforcement by polyurethane to improve stiffness of air-supported fabric formwork is expected to be considered in the design and construction of the concrete shell,especially dealing with the advance of shape-control.
文摘To improve the performance of solid composite propellants(SCPs)supplemented with ammonium nitrate(AN)as an oxidizer,the incorporation of energetic ingredients such as explosives,energetic binders or catalysts is a common effective approach.For this purpose,polyurethane(PU),a typical inert binder,was mixed with nitrocellulose(NC)as an energetic polymer.Numerous composite solid propellant compositions based on AN and NC-modified polyurethane binder with different NC ratios were prepared.The prepared formulations were characterized using Fourier transform infrared spectroscopy(FTIR),RAMAN spectroscopy,X-ray diffraction(XRD),electron densimetry,thermogravimetric(TG)analysis,and differential scanning calorimetry(DSC).A kinetic study was then performed using the iterative KissingerAkahira-Sunose(It-KAS),Flynn-Wall-Ozawa(It-FWO),and non-linear Vyazovkin integral with compensation effect(VYA/CE)methods.The theoretical performances,such as theoretical specific impulse,adiabatic flame temperature,and ideal exhaust gaseous species,were also determined using the NASA Lewis Code,Chemical Equilibrium with Application(CEA).Spectroscopic examinations revealed the existence of NC and full polymerization of PU in the prepared propellants.According to density tests,the density of the propellant increases as the nitrocellulose component increases.According to the thermal analysis and kinetics study,the increase in NC content catalyzed the thermal decomposition of the AN-based composite solid propellants.Based on the theoretical study,increasing the amount of NC in the propellant increased the specific impulse and,as a result,the overall performance.
文摘Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in the GAP matrix beside the addition of dibutyltin dilaurate(DBTDL)to ensure cross-linking and curing completion of the prepared CSRP.The viscosity and hardness of all prepared formulations were monitored continuously during the curing process.The mechanical characteristics of cured samples were tested.The burning rate at operating pressure and specific impulse were measured,while the theoretical specific impulse(I sp)was calculated by ICT code and compared with the measured results.According to the results,DOA was found to be a suitable plasticizer for GAP when using in propellant.The mechanical properties of CSRP with 25%GAP can produce the optimum mechanical behavior,which is close to that of HTPB-based CSRP.The optimum GAP-based formulation is one candidate to replace the traditional HTPB-based CSRP with high burning rate for some applications.
文摘Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a reactive system.A two-part polyurethane film was used as a model system.The results showed that the height ratio of ring mode signal in urea and C—O signal in polyester polyol can be used to calculate the ratio of the two reactants.The assignments of the peaks were studied by in-situ reaction monitoring with moisture level changes and deuteration methods.The applicable conditions of this calibration curves were also discussed.