In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads o...In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.展开更多
Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a bl...The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the ACANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.展开更多
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T...Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.展开更多
In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based...In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based on the balanced distribution of functional characteristics for ma- chines. With this method, functional characteristics were classified based on machining functions of cutting-tools and machining accuracy of machines. Then the optimization objective was set as the to- tal shortest mobile distance that all the workpieces are moved from one machine to another, and an improved genetic algorithm (GA) was proposed to optimize the configuration. The elitist strategy was used to enhance the global optimization ability of GA, and excellent gene pool was designed to maintain the diversity of population. Software Matlab was used to realize the algorithm, and a case study of simulation was used to evaluate the method.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC...To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing.展开更多
基金supported by the Science Foundation of Jiangsu Province of China (Grant No.BK2011759)
文摘In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. G2009CB929300)the National Natural Science Foundation of China (Grant No. 60521001 and 60925016)
文摘The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the ACANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
基金supported partly by the National Science and Technology Major Project of China(Grant No.2016ZX05025-001006)Major Science and Technology Project of CNPC(Grant No.ZD2019-183-007)
文摘Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.
基金Supported by the National Natural Science Foundation of China(51105039)
文摘In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based on the balanced distribution of functional characteristics for ma- chines. With this method, functional characteristics were classified based on machining functions of cutting-tools and machining accuracy of machines. Then the optimization objective was set as the to- tal shortest mobile distance that all the workpieces are moved from one machine to another, and an improved genetic algorithm (GA) was proposed to optimize the configuration. The elitist strategy was used to enhance the global optimization ability of GA, and excellent gene pool was designed to maintain the diversity of population. Software Matlab was used to realize the algorithm, and a case study of simulation was used to evaluate the method.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
文摘To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing.