期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Critical Stokes Number for Gas-Solid Flow Erosion of Wind Turbine Airfoil 被引量:3
1
作者 Li Deshun Gong Yuxiang +2 位作者 Li Rennian Li Yinran Ma Ruijie 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期67-72,共6页
Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is... Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is first investigated.When the sand diameter is less than 3μm,the sands will bypass the airfoil and no erosion occurs.When the sand diameter is larger than 4μm,the sand grains collide with the airfoil and the erosion happens.Thus,there must be a critical sand diameter between 3μm and 4μm,at which the erosion is initiated on the airfoil surface.To find out this critical value,aparticle Stokes number is introduced here.According to the range of the critical sand diameter mentioned above,the critical value of particle Stokes number is reasonably assumed to be between 0.007 8and 0.014.The assumption is subsequently validated by other four factors influecing the erosion,i.e.,the angle of attack,relative thickness of the airfoil,different series airfoil,and inflow velocity.Therefore,the critical range of Stokes number has been confirmed. 展开更多
关键词 wind turbine airfoil erosion critical Stokes number gas-solid two-phase flow
在线阅读 下载PDF
Quark Number Susceptibility around the Chiral Critical End Point
2
作者 蒋宇 侯丰尧 +1 位作者 罗翠柏 宗红石 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期39-42,共4页
We calculate the quark number susceptibility (QNS) around the chiral critical end point (CEP). The CEP is found to be located at (μc,Tc)= (80 MeV, 148 MeV) where μc and Tc are the critical chemical potential... We calculate the quark number susceptibility (QNS) around the chiral critical end point (CEP). The CEP is found to be located at (μc,Tc)= (80 MeV, 148 MeV) where μc and Tc are the critical chemical potential and temperature, respectively. The QNS is found to have the highest and sharpest peak at the CEP. It is also found that, when the chemical potential μ is in the range of 60MeV≤ μ ≤ 110MeV, the QNS near the transition temperature is larger than the free field result, which indicates that the space-like damping mode dominates the degree of freedom of motion near the CEP. 展开更多
关键词 CEP QCD Quark number Susceptibility around the Chiral critical End Point
在线阅读 下载PDF
从亚临界到临界雷诺数圆柱绕流和分离泡的大涡模拟
3
作者 赵志明 王嘉松 +1 位作者 龚逸纲 徐海博 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期219-231,共13页
A large eddy simulation of wall-adapting local eddy-viscosity model(LES-WALE)is used to simulate the threedimensional flow around a circular cylinder with a diameter of 0.25 m from sub-critical to super-critical Reyno... A large eddy simulation of wall-adapting local eddy-viscosity model(LES-WALE)is used to simulate the threedimensional flow around a circular cylinder with a diameter of 0.25 m from sub-critical to super-critical Reynolds numbers at 1×10^(5),2.5×10^(5),and 7.2×10^(5),respectively.The present results such as drag crisis,surface pressure distribution,and Strouhal number are in good agreement with the classical experimental data.When entering the critical region,a small plateau was found on the pressure distribution curves,corresponding to the appearance of laminar separation bubbles,and the separation point is delayed and the recirculation bubbles become narrowed and shortened.The tangential velocity of the cylinder surface changes from positive to negative at the separation point.The instantaneous vorticity and timeaveraging separation bubbles embody an unstable feature.Within the separation bubble,the pressure varies dramatically with time,but not with position.The surface pressure fluctuates greatly after the laminar separation bubble appears,and it is gradually stabilized until the basic pressure is reached.The process of laminar separation,transition from laminar flow to turbulent flow and turbulent reattachment is also shown.The three-dimensional Q criterion of vortex structure and the two-dimensional spanwise vorticity reveal the phenomenon that the wake structure narrows with the increase of the Reynolds number. 展开更多
关键词 Large eddy simulation critical Reynolds number Drag crisis Laminar separation bubble Vortex shedding
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部