期刊文献+
共找到249篇文章
< 1 2 13 >
每页显示 20 50 100
Cascading failure analysis of an interdependent network with power-combat coupling
1
作者 WANG Yang TAO Junyong +2 位作者 ZHANG Yun’an BAI Guanghan DUI Hongyan 《Journal of Systems Engineering and Electronics》 2025年第2期405-422,共18页
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy... Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method. 展开更多
关键词 cascading failure survivability analysis interdepen-dent network power-combat(P-C)coupling.
在线阅读 下载PDF
Analysis of multi-factor influences of tilt-to-length coupling noise in a test mass interferometer
2
作者 ZHAO Meng-yuan SHEN Jia +5 位作者 PENG Xiao-dong MA Xiao-shan YANG Zhen LIU He-shan MENG Xin ZHANG Jia-feng 《中国光学(中英文)》 北大核心 2025年第3期704-714,共11页
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t... For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems. 展开更多
关键词 space interferometry optical simulation tilt-to-length coupling noise
在线阅读 下载PDF
Accidental zero modes in a multiorbital superconductor with spin-orbital coupling
3
作者 XIANG Ke WANG Da WANG Qianghua 《物理学进展》 北大核心 2025年第5期250-259,共10页
The Majorana zero modes in vortex cores are of extensive interest in the context of topological quantum computing.However,a zero-energy bound state may arise accidentally but is not necessarily a Majorana zero mode.Su... The Majorana zero modes in vortex cores are of extensive interest in the context of topological quantum computing.However,a zero-energy bound state may arise accidentally but is not necessarily a Majorana zero mode.Such accidental zero modes should be carefully ruled out in experiment in order to identify the genuine Majorana zero modes.We show that in a spin-orbital coupled multi-band superconductor,such as the iron-selenide superconductor,accidental zero modes indeed arise in the vortex core if the pairing symmetry is the so-called nodeless d-wave(defined in the absence of spin-orbital coupling).Instead,if the pairing sym-metry is s_(++)or s_(+−)with respect to the Fermi pockets split by the spin-orbital coupling,the accidental zero modes do not appear in the limit of weak spin-orbital coupling.Our results are not only important in the experimental identification of Majorana zero modes,but also provide an avenue to pinpoint the pairing symmetry of the iron-selenide superconductor. 展开更多
关键词 spin-orbital coupling Andreev approximation accidental zero mode
在线阅读 下载PDF
Failure microscopic mechanism and damage constitutive model of dolomite under water-rock coupling interaction
4
作者 SUN Xiao-ming ZHANG Jing +6 位作者 SHI Fu-kun HE Lin-sen ZHANG Yong MIAO Cheng-yu DING Jia-xu MA Li-sha ZHAO Hao-ze 《Journal of Central South University》 2025年第4期1431-1446,共16页
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev... To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability. 展开更多
关键词 water-rock coupling DOLOMITE constitutive model MICROSTRUCTURE loading-unloading cycle
在线阅读 下载PDF
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
5
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
The noise analysis and multi-physical field coupling study of high-precision SERF atomic gyroscopes
6
作者 Jiaxin Liu Xusheng Lei +3 位作者 Yu Yuan Yizhe Zhou Haoying Pang Zhihong Wu 《Defence Technology(防务技术)》 2025年第8期213-224,共12页
The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological ... The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings. 展开更多
关键词 SERF gyroscope Empirical mode decomposition Allan deviation Noise feature recognition Multi physics field coupling
在线阅读 下载PDF
Investigation on the exploding foil initiators ignition enhanced by explosion-electricity coupling 被引量:1
7
作者 Songmao Zhao Haotian Jian +3 位作者 Ke Wang Zheng Ning Peng Zhu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期1-11,共11页
Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce p... Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce plasma during electric explosion can serve as a good carrier for studying the EEC.To investigate the enhancement ability and mechanism of EEC in EFI ignition performance,a kind of EFI chips which could realize the EEC effect was designed and fabricated to observe the characteristics of current and voltage,flyer and plasma temperature during Boron Potassium Nitrate(BPN) ignition of the EFI.It was found that the EEC could enhance EFI ignition in terms of energy utilization,ignition contact surface,and high-temperature sustainability of plasma:firstly,the EEC prolonged the late time discharge(LTD) phase of the electric explosion,making the energy of capacitor effectively utilized;secondly,the EEC could create a larger area of ignition contact surface;last of all,the EEC effect enhanced its hightemperature sustainability by sustaining continuous energy input to plasma.It also was found that the ignition voltage of BPN could be reduced by nearly 600 V under the condition of 0.4 μF capacitance.The research has successfully combined EEC with EFI,revealing the behavioral characteristics of EEC and demonstrating its effective enhancement of EFI ignition.It introduces a new approach to improving EFI output,which is conducive to low-energy ignition of EFI,and expected to take the ignition technology of EFI to a new level. 展开更多
关键词 Exploding foil initiator Explosion-electricity coupling PLASMA Ignition mechanism Boron potassium nitrate
在线阅读 下载PDF
Aging Characteristics of Lithium-Ion Battery Under Fast Charging Based on Electrochemical-thermalmechanical Coupling Model
8
作者 Dong-Xu Zuo Pei-Chao Li 《电化学(中英文)》 CAS 北大核心 2024年第9期10-24,共15页
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip... The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures. 展开更多
关键词 Lithium-ion battery Aging characteristics Fast charging Electrochemical-thermal-mechanical coupling model
在线阅读 下载PDF
Investigation of the electrical performance of high-speed aircraft radomes using a thermo-mechanical-electrical coupling model
9
作者 JI Jianmin WANG Wei +2 位作者 YU Huilong LIU Juan CHEN Bo 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1397-1410,共14页
During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents ... During high-speed flight,both thermal and mechani-cal loads can degrade the electrical performance of the antenna-radome system,which can subsequently affect the performance of the guidance system.This paper presents a method for evalu-ating the electrical performance of the radome when subjected to thermo-mechanical-electrical(TME)coupling.The method involves establishing a TME coupling model(TME-CM)based on the TME sharing mesh model(TME-SMM)generated by the tetrahedral mesh partitioning of the radome structure.The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered.Firstly,the temperature field of the radome is obtained by tran-sient thermal analysis while the deformation field of the radome is obtained by static analysis.Subsequently,the dielectric varia-tion and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM.The three-dimensional(3D)ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance.A representative example is provided to illustrate the superiority and necessity of the pro-posed method.This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time dur-ing high-speed flight. 展开更多
关键词 high-speed flight thermo-mechanical-electrical(TME) TME coupling model(TME-CM) dielectric temperature drift structural deformation electrical performance
在线阅读 下载PDF
Soliton Solutions of a Coupled KdV System via Backlund Transformation
10
作者 CAO Xifang WU Yiheng +2 位作者 LU Yi XU Wenjing XIA Yutong 《应用数学》 北大核心 2025年第1期211-216,共6页
In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation ... In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions. 展开更多
关键词 KdV equation Coupled KdV system B¨acklund transformation SOLITON
在线阅读 下载PDF
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
11
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
In situ synthesis,crystal structure,and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold
12
作者 WANG Zhaodong 《无机化学学报》 北大核心 2025年第3期597-604,共8页
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py... A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713. 展开更多
关键词 amide ligand copper complex single crystal structure C-N coupling magnetic characterization
在线阅读 下载PDF
Energetic proton radiation effects on the super large array 9k×9k CCDs used in a space telescope
13
作者 WANG Zujun WANG Xiaodong +9 位作者 YANG Ye TANG Ning YAN Shixing LIU Changju GUO Xiaoqiang SHENG Jiangkun GOU Shilong LYU Wei YE Wenbo WANG Zhongming 《中国空间科学技术(中英文)》 北大核心 2025年第5期143-149,共7页
To know about the radiation effects on the super large array 9 k×9 k CCDs used in a space telescope induced by energetic protons,the experiments of the super large array 9 k×9 k charge coupled devices(CCDs)u... To know about the radiation effects on the super large array 9 k×9 k CCDs used in a space telescope induced by energetic protons,the experiments of the super large array 9 k×9 k charge coupled devices(CCDs)used in the space telescope irradiated by 60 MeV and 100 MeV protons are presented.The samples were exposed by 60 MeV and 100 MeV protons at fluences of 5×10^(9)/cm^(2) and 1×10^(10)/cm^(2),respectively.The degradations of the main performance parameters of the super large array CCDs which are paid special attention to the space telescope are investigated.The full well capacity,mean dark current,and the charge transfer inefficiency(CTI)versus proton fluence are presented,which are tested at very low temperature of-85℃.The annealing tests of 168 h were carried out after proton irradiation.The dark images before and after proton irradiation are also presented to compare the image degradation.The degradation mechanisms of the super large array CCDs irradiated by protons are analyzed.The experimental results show that the main performance parameters of the CCDs are degraded after 60 MeV and 100 MeV protons and the degradations induced by 60 MeV protons are larger than that induced by 100 MeV protons.The experimental results of the super large array CCDs irradiated by protons will provide the basic test data support for orbit life assessment of the space telescope. 展开更多
关键词 charge coupled device(CCD) proton irradiation full well capacity dark current charge transfer inefficiency(CTI)
在线阅读 下载PDF
Study on the effects of combustion characteristics of pyrotechnic charges on pyrotechnic shocks
14
作者 Jingcheng Wang Shihui Xiong +2 位作者 Huina Mu Xiaogang Li Yuquan Wen 《Defence Technology(防务技术)》 2025年第4期79-98,共20页
This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and sil... This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and silicon-based delay compositions,using thermodynamic software.A multiphase flowthermal-solid coupling model was established,and the combustion process of the pyrotechnic charges within a closed bomb was simulated.The pyrotechnic shock generated by combustion was predicted.The combustion pressures and pyrotechnic shocks were measured.The simulation results demonstrated good agreement with experimental results.Additionally,the mechanism of shock generation by the combustion of pyrotechnic charges in the closed bomb was analyzed.The effects of the combustion characteristics of the pyrotechnic charges on the resulting pyrotechnic shocks were systematically investigated.Notably,the shock response spectrum of the gas-generating pyrotechnic charges is greater than that of the micro gas compositions at most frequencies,particularly in the mid-field pyrotechnic shocks(3-10 kHz).Furthermore,the pyrotechnic shocks increase approximately linearly with the impulse of the gas-generating pyrotechnic charges. 展开更多
关键词 Pyrotechnic charges Pyroshock Closed bomb tests Combustion characteristics Multiphase flow-thermal-solid coupling
在线阅读 下载PDF
Effects of lateral translation on aerodynamic characteristics of superconducting maglev trains
15
作者 ZHANG Lei PAN Shen-gong +5 位作者 LIN Tong-tong YU Qing-song WANG Tian-tian YANG Ming-zhi LIU Dong-run XU Shu 《Journal of Central South University》 2025年第8期3150-3172,共23页
Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetri... Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetries in the flow field structure on both sides of the narrow suspension gap,resulting in instability and deterioration of the train’s aerodynamic characteristics,significantly impacting its operational safety.In this study,we firstly validate the aerodynamic characteristics of the superconducting magnetic levitation system by developing a numerical simulation method based on wind tunnel test results.We then investigate the influence of lateral translation parameters on the train’s aerodynamic performance under conditions both with and without crosswinds.We aim to clarify the evolution mechanism of the flow field characteristics under the coupling effect between the train and the U-shaped track and to identify the most unfavorable operational parameters contributing to the deterioration of the train’s aerodynamic properties.The findings show that,without crosswinds,a lateral translation of 30 mm causes a synchronous resonance phenomenon at the side and bottom gaps of the train-track coupling,leading to the worst aerodynamic performance.Under crosswind conditions,a lateral translation of 40 mm maximizes peak pressure fluctuations and average turbulent kinetic energy around the train,resulting in the poorest aerodynamic performance.This research provides theoretical support for enhancing the operational stability of superconducting magnetic levitation trains. 展开更多
关键词 superconducting magnetic trains lateral translation aerodynamic characteristics crosswind operation flow coupling
在线阅读 下载PDF
Study of the explosion load characteristics and structural response law under a cabin water mist environment: Experimental tests and simulations
16
作者 Xiaobin Li Ya Zhang +4 位作者 Yiheng Zhang Hai Huang Zhiping Wang Xingxing Wu Wei Chen 《Defence Technology(防务技术)》 2025年第7期387-404,共18页
To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistat... To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistatic pressure and structural residual deflection increase with increasing working pressure of the water mist nozzle.Specifically,the weakening rate of the initial peak overpressure ranges from 7.8%to 31.0%,the quasistatic pressure weakening rate ranges from 29.2%to 41.0%,and the weakening rate of the center of the plate residual deflection ranges from 10.8%to 34.4%under the various working pressures of the nozzles.To further explore the effect of water mist explosion suppression,a method for three-dimensional numerical simulations of water mist weakening the explosion shock wave is established to explore the explosion load characteristics of the compartment and the bulkhead response law.On the basis of the dimension analysis method,empirical formulas are derived to predict the residual deflection thickness in the center of the bulkheads.These findings provide the fundamental basis for the appli-cation of water mist in anti-explosive protection. 展开更多
关键词 Cabin explosion Blast response Fluidesolid coupling Load weakening Water mist suppression
在线阅读 下载PDF
Dynamic hysteresis brittle behavior and temperature-strain rate-coupled damage modeling:A multiscale study of poly(phthalazinone ether sulfone ketone)under extreme service conditions
17
作者 Liangliang Shen Shi Su +4 位作者 Wenhui Zhang Shilun Shi Xigao Jian Tianqi Zhu Jian Xu 《Defence Technology(防务技术)》 2025年第10期259-273,共15页
Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms und... Poly(phthalazinone ether sulfone ketone)(PPESK)is a new-generation high-performance thermoplastic resin that exhibits excellent thermal stability and mechanical properties.However,its damage and failure mechanisms under high-temperature and high-strain-rate coupling conditions remain unclear,significantly limiting the engineering applications of PPESK-based composites in extreme environments such as aerospace.To address this issue,in this study,a temperature-controlled split Hopkinson pressure bar experimental platform was developed for dynamic tensile/compressive loading scenarios.Combined with scanning electron microscopy and molecular dynamics simulations,the thermomechanical behavior and failure mechanisms of PPESK were systematically investigated over the temperature range of 293-473 K.The study revealed a novel"dynamic hysteresis brittle behavior"and its underlying"segmental activation±response lag antagonistic mechanism".The results showed that the strain-rate-induced response lag of polymer chain segments significantly weakened the viscous dissipation capacity activated by thermal energy at elevated temperatures.Although high-strain-rate conditions led to notable enhancement in the dynamic strength of the material(with an increase of 8%-233%,reaching 130%-330%at elevated temperatures),the fracture surface morphology tended to become smoother,and brittle fracture characteristics became more pronounced.Based on these findings,a temperature±strain rate hysteresis antagonistic function was constructed,which effectively captured the competitive relationship between temperature-driven relaxation behavior and strain-rateinduced hysteresis in thermoplastic resins.A multiscale damage evolution constitutive model with temperature±rate coupling was subsequently established and numerically implemented via the VUMAT user subroutine.This study not only unveils the nonlinear damage mechanisms of PPESK under combined service temperatures and dynamic/static loading conditions,but also provides a strong theoretical foundation and engineering guidance for the constitutive modeling and parametric design of thermoplastic resin-based materials. 展开更多
关键词 PPESK Dynamic damage evolution Temperature-strain rate coupling Dynamic hysteresis embrittlement behavior Antagonistic mechanism
在线阅读 下载PDF
Deformation characteristics and interfacial damage of CRTS II slab track joints under operating temperature conditions
18
作者 DONG Bo CHEN Zhi-yuan +3 位作者 ZHU Hao CAI Xiao-pei ZHANG Xing HE Xu 《Journal of Central South University》 2025年第9期3657-3674,共18页
Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structur... Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structure.Based on measured data,a thermal-mechanical coupling model of the track was established.The deformation characteristics and interfacial damage behavior of joints under typical temperature fields were studied.The findings indicate that the annual extreme temperature range of the slab track,fluctuates from−1.4 to 49.8℃.The annual temperature gradient within the vertical depth range of 0 to 0.2 m of the track varies between−16.19℃/m and 30.15℃/m.The vertical deformation of joints is significantly influenced by high temperatures,with a maximum measured deformation of 0.828 mm.The joint seams are primarily affected by low temperatures,which lead to a separation of 0.9 to 1.0 mm.Conversely,interlayer damage of joints is predominantly influenced by elevated temperatures.In summer,the maximum ratio of interface damage area in the joint can reach up to 95%,with the maximum debonding area ratio can be as high as 84%.The research results can provide help for joint damage regularity and deformation control of CRTS II slab track. 展开更多
关键词 CRTS II slab track temperature measurement thermo-mechanical coupling analysis deformation characteristics damage evolution
在线阅读 下载PDF
Iterative solution and numerical analysis of vehicle-track-bridge nonlinear coupled vibration considering viscoelasticity of rail pads
19
作者 CUI Wei-tao GAO Liang +3 位作者 XIAO Hong MIAO Shuai-jie NIU Zhen-yu XIAO Yi-xiong 《Journal of Central South University》 2025年第7期2750-2765,共16页
To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ... To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations. 展开更多
关键词 high-speed railway rail pads fractional derivative vehicle-track-bridge coupled model iterative algorithm
在线阅读 下载PDF
High-thermal free vibration analysis of functionally graded microplates using a new finite element formulation based on TSDT and MSCT
20
作者 Huu Trong Dang Nhan Thinh Hoang +2 位作者 Quoc Hoa Pham Trung Thanh Tran Huy Gia Luong 《Defence Technology(防务技术)》 2025年第2期131-149,共19页
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r... Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles. 展开更多
关键词 Microplates Functionally graded material Finite element method Modified couple stress theory New TSDT High-thermal free vibration Pasternak foundation
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部