The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturb...The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.展开更多
The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physio...The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.展开更多
Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in ...Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in the linear response regime using Green's function formalism. We used thiol-terminated(–SH bond) benzene units and found a positive thermopower because the highest occupied molecular orbital(HOMO) is near the Fermi energy level. We investigated the influence of molecular length and molecular junction geometry on the thermoelectric properties. Our results show that the thermoelectric properties are highly sensitive to the coupling geometry and the molecular length. In addition, we observed that the interference effects and increasing molecular length can increase the thermoelectric efficiency of device in a specific configuration.展开更多
We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, wher...We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, where the lower and the upper value functions are defined through this BSDE. The existence and the uniqueness theorem and comparison theorem are proved for such equations with the help of an iteration method. We also show that the lower and the upper value functions satisfy the dynamic programming principle. Moreover, we study the associated Hamilton-Jacobi-Bellman-Isaacs(HJB-Isaacs)equations, which are nonlocal, and strongly coupled with the lower and the upper value functions. Using a new method, we characterize the pair(W, U) consisting of the lower and the upper value functions as the unique viscosity solution of our nonlocal HJB-Isaacs equation. Furthermore, the game has a value under the Isaacs’ condition.展开更多
We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Gree...We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Green's function technique, the photon-assisted spin-dependent average current is analyzed. The T-shaped three-quantum-dot molecule A-B interferometer exhibits excellent controllability in the average current resonance spectra by adjusting the interdot coupling strength, Rashba spin-orbit coupling strength, magnetic flux, and amplitude of the time-dependent external field.Efficient spin filtering and multiple electron-photon pump functions are exploited in the multi-quantum-dot molecule A-B interferometer by a time-modulated external field.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10574096 and 10676025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050610010)the Scientific Research Foundation of Young Teacher of Guizhou Normal University, China
文摘The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.
文摘The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.
文摘Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in the linear response regime using Green's function formalism. We used thiol-terminated(–SH bond) benzene units and found a positive thermopower because the highest occupied molecular orbital(HOMO) is near the Fermi energy level. We investigated the influence of molecular length and molecular junction geometry on the thermoelectric properties. Our results show that the thermoelectric properties are highly sensitive to the coupling geometry and the molecular length. In addition, we observed that the interference effects and increasing molecular length can increase the thermoelectric efficiency of device in a specific configuration.
基金supported by the NSF of China(11071144,11171187,11222110 and 71671104)Shandong Province(BS2011SF010,JQ201202)+4 种基金SRF for ROCS(SEM)Program for New Century Excellent Talents in University(NCET-12-0331)111 Project(B12023)the Ministry of Education of Humanities and Social Science Project(16YJA910003)Incubation Group Project of Financial Statistics and Risk Management of SDUFE
文摘We establish a new type of backward stochastic differential equations(BSDEs)connected with stochastic differential games(SDGs), namely, BSDEs strongly coupled with the lower and the upper value functions of SDGs, where the lower and the upper value functions are defined through this BSDE. The existence and the uniqueness theorem and comparison theorem are proved for such equations with the help of an iteration method. We also show that the lower and the upper value functions satisfy the dynamic programming principle. Moreover, we study the associated Hamilton-Jacobi-Bellman-Isaacs(HJB-Isaacs)equations, which are nonlocal, and strongly coupled with the lower and the upper value functions. Using a new method, we characterize the pair(W, U) consisting of the lower and the upper value functions as the unique viscosity solution of our nonlocal HJB-Isaacs equation. Furthermore, the game has a value under the Isaacs’ condition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11447132 and 11504042)the Natural Science Foundation of Heilongjiang,China(Grant No.A201405)+2 种基金111 Project to Harbin Engineering University,China(Grant No.B13015)Chongqing Science and Technology Commission Project,China(Grant Nos.cstc2014jcyj A00032 and cstc2016jcyj A1158)Scientific Research Project for Advanced Talents of Yangtze Normal University,China(Grant No.2017KYQD09)
文摘We investigate the time-modulated electronic and spin transport properties through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm(A-B) interferometer. By using the Keldysh non-equilibrium Green's function technique, the photon-assisted spin-dependent average current is analyzed. The T-shaped three-quantum-dot molecule A-B interferometer exhibits excellent controllability in the average current resonance spectra by adjusting the interdot coupling strength, Rashba spin-orbit coupling strength, magnetic flux, and amplitude of the time-dependent external field.Efficient spin filtering and multiple electron-photon pump functions are exploited in the multi-quantum-dot molecule A-B interferometer by a time-modulated external field.