期刊文献+
共找到3,523篇文章
< 1 2 177 >
每页显示 20 50 100
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:9
1
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
在线阅读 下载PDF
Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8
2
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated... Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase. 展开更多
关键词 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
在线阅读 下载PDF
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
3
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
Investigation of flight stability for fixed canard dual-spin projectile via CFD/RBD coupled method
4
作者 Gang Wang Tengyue Zhang +2 位作者 Tianyu Lin Haizhen Lin Ke Xi 《Defence Technology(防务技术)》 2025年第11期1-18,共18页
In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj... In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability. 展开更多
关键词 Fixed canard dual-spin projectile CFD/RBD coupled method Virtualflight simulation Following stability Dynamic stability
在线阅读 下载PDF
Numerical simulation for influences of pressure solution on T-H-M coupling in aggregate rock
5
作者 张玉军 琚晓冬 《Journal of Central South University》 SCIE EI CAS 2014年第10期3936-3944,共9页
The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical mode... The pressure solution model of granular aggregates was introduced into a FEM code which was developed for the analysis of thermo-hydro-mechanical(T-H-M) coupling in porous medium. Aimed at creating a hypothetical model of nuclear waste disposal in unsaturated quartz aggregate rock mass with laboratory scale, two 4-year computation cases were designed: 1) The porosity and permeability of rock mass are functions of the pressure solution; 2) The porosity and the permeability are constants. Calculation results show that the magnitude and distribution of stresses in the rock mass of these two calculation cases are roughly the same. And, the porosity and the permeability decrease to 43%-54% and 4.4%-9.1% of their original values after case 1 being accomplished; but the negative pore water pressures in cases 1 and 2 are respectively 1.0-1.25 and 1.0-1.1 times of their initial values under the action of nuclear waste. Case 1 exhibits the obvious effect of pressure solution. 展开更多
关键词 pressure solution aggregate rock thermo-hydro-mechanical(T-H-M) coupling numerical simulation
在线阅读 下载PDF
Numerical simulation of dynamic fracture properties of rocks under different static stress conditions 被引量:8
6
作者 LIANG Zheng-zhao QIAN Xi-kun +1 位作者 ZHANG Ya-fang LIAO Zhi-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期624-644,共21页
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio... When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case. 展开更多
关键词 rock mechanics coupled static and dynamic loading numerical simulation rate-dependent damage constitutive model
在线阅读 下载PDF
Molecular Dynamic Simulation of Kindlin F3 Domain with Integrin β3-tail
7
作者 Yan Zhang Ying Fang Jianhua Wu 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期160-160,共1页
Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles i... Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles in the integrin-signaling pathway by directly interacting with and activating integrins,which mediate the cell-extracellular matrix adhesion and signaling.As a widely distributed PTB domain protein and a major member of the kindlin family,kindlin2 interacts withβ3-tail,bridges talin-activated integrins to promote integrin aggregation,and enhances talin-induced integrin activation.Thus,kindlin2 is identified as a coactivator of integrins.Unlike talins,kindlin2 cannot directly alter the conformation of the integrin transmembrane helix and fail to activate integrin alone.Nevertheless,although it is widely accepted that kindlins and talins synergistically promote integrin activation,the underlying mechanism is unclear.Thus,the study of the force dissociation of the kindlin2/β3-tail complex and the conformation stabilization under different mechanical micro-environments should be of great significance for the further understanding of the structural basis of its synergistically activation of integrin.To reveal the molecular dynamics mechanism of interaction between kindlin2 andβ3-tail,we perform molecular dynamics(MD)simulations for this complex with different computing strategies interaction.In MD simulations,the available crystal structures of Kindlin-2/β3-tail complex(Protein Data Bank code 5XQ1)was downloaded from the PDB database.Two software packages,VMD for visualization and modeling and NAMD 2.13 for energy minimizations and MD simulations,were used here.The steadystate conformation of the complex was obtained from the equilibrium simulation.The dissociation event was observed by the constant velocity simulation,and the mechanical stability of the complex was observed by the constant force simulation.Our results showed that,during the equilibrium of the kindlin2-F3/β34ail complex,the residue MET612,LYS613 and TRP615 on the F3 domain of kindlin2 contributed to hydrogen-bonding with the corresponding residues onβ3 integrin.These bonds exhibit moderate or strong stability through steered molecular dynamics(SMD)simulation.During the constant velocity simulation,the complex exhibits a variety of unfolding pathways against tension applications,which are mainly distinguished by the disruption of hydrogen-bonds between the F3 domain a1/a2 helixes andβ1/β2 sheets.During the constant force simulation,the different phases of the composite force dissociation have different dissociation probabilities,which shows the biphasic force-dependent characteristics.And,the key residues in the pulling were recognized according not only to the number of interacting residue pairs,but also to their bond strength.Using molecular dynamics simulation,we showed the steady state of the kindlin2-F3/β3-tail complex under different tensile forces,and observe the dynamic process of molecular interaction.A possible underlying biophysical mechanism is that,the dissociation of Kindlin2-F3/β3-tail complex is biphasic force-dependent,and the conformations under different stretching states have different binding affinities.This study not only provides insights into the structural basis and mechanical regulation mechanisms of the kindlin/integrin interaction,in understanding in kindlin/integrin-related signaling in different cellular biological processes,but also provides new ideas for novel drug design and the treatment of related diseases. 展开更多
关键词 Kindlin2 molecular dynamics simulation STRUCTURE-FUNCTION RELATION MECHANOCHEMICAL coupling
在线阅读 下载PDF
Research on alternating magnetic treatment to diamond segments by experiment and numerical simulation
8
作者 Fu Yuming~1 Yu Kun~(2,1) Yin Jing~1 (1.Mechanical Engineering College,Yanshan University,Qinhuangdao 066004,China) (2.Eectrical and Mechanical Engineering Department,Qinhuangdao Institute of Technology,Beidaihe 066110,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期161-164,167,共5页
The heated test pieces of diamond segments were treated by alternating magnetic field,the influences of magnetic treatment on microstructure densification of diamond segments were studied through metallurgical structu... The heated test pieces of diamond segments were treated by alternating magnetic field,the influences of magnetic treatment on microstructure densification of diamond segments were studied through metallurgical structure analysis.The experiment results indicated that,the densification of diamond segments was further improved after magnetized.The alternating magnetic force distributions in the diamond segments were calculated by numerical simulation according to the coupled field theory.In alternating magnetic field,a prodigious swirl current field appeared in the component.The magnetic vibrating due to alternating magnetic force was obvious,which was in favor of microcosmic structure compacter.The numerical analysis results provided direct evidences for that the alternating magnetic treatment can act as an effective technique to improve the microstructure densification of diamond segments. 展开更多
关键词 MAGNETIC treatment DIAMOND SEGMENT microstructure NUMERICAL simulation coupled analysis
在线阅读 下载PDF
基于RELAP5和Simulink的核电汽轮发电机组耦合仿真研究
9
作者 赵冉 林萌 +2 位作者 贺军 黄仕龙 林俊义 《核科学与工程》 北大核心 2025年第2期265-272,共8页
为准确计算核电厂热力系统与内外电网之间的相互作用,需建立核电厂热力系统与电力系统之间的耦合分析模型。由于RELAP5热工水力系统程序不具备电力系统暂态仿真分析功能,而Simulink具备强大的电力系统暂态仿真分析功能。据此本文提出将R... 为准确计算核电厂热力系统与内外电网之间的相互作用,需建立核电厂热力系统与电力系统之间的耦合分析模型。由于RELAP5热工水力系统程序不具备电力系统暂态仿真分析功能,而Simulink具备强大的电力系统暂态仿真分析功能。据此本文提出将RELAP5中的汽轮机模型与Simulink中的同步发电机模型进行耦合从而实现核电厂热力系统与电力系统联合仿真计算功能,精确计算热力系统和电力系统瞬态过程相互扰动和影响,同时利用现场实验数据对耦合仿真模型进行了验证,结果表明:所采用的耦合计算方法可以准确模拟热力系统和电力系统瞬态过程参数变化趋势及规律,研究成果可拓展RELAP5应用功能并更好地完善核电厂仿真模型。 展开更多
关键词 REALP5程序 simulink程序 耦合仿真 电力系统 汽轮机发电机组
在线阅读 下载PDF
Dynamic Simulation for Missile Erection System
10
作者 姚晓光 郭晓松 +1 位作者 冯永保 高钦和 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第4期262-267,共6页
In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one a... In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one and then the forces applied to it are analyzed.Secondly,the rigid-flexible coupling dynamic simulation for erection system is accomplished by use of the system simulation software,for example Pro/E,ADAMS,ANSYS,MATLAB/Simulink,etc.Finally,having the aid of simulation results,the kinetic and dynamic characteristics of the flexible bodies in erection system are analyzed.The simulation considering the erection system as a rigid-flexible coupling system can provide valuable results to the research of its kinetic,dynamic and vibrational characteristics. 展开更多
关键词 力学 导弹直立系统 刚柔耦合 系统模拟
在线阅读 下载PDF
Analysis of multi-factor influences of tilt-to-length coupling noise in a test mass interferometer
11
作者 ZHAO Meng-yuan SHEN Jia +5 位作者 PENG Xiao-dong MA Xiao-shan YANG Zhen LIU He-shan MENG Xin ZHANG Jia-feng 《中国光学(中英文)》 北大核心 2025年第3期704-714,共11页
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t... For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems. 展开更多
关键词 space interferometry optical simulation tilt-to-length coupling noise
在线阅读 下载PDF
基于Simulink的机电液系统虚拟样机建模方法 被引量:3
12
作者 崔洪新 冯柯 +1 位作者 李焕良 韩金华 《计算机应用》 CSCD 北大核心 2016年第A02期129-131,共3页
针对机电液一体化系统各学科间参数耦合关联、单一学科的建模仿真分析无法有效反映系统整体性能的问题,提出了基于Simulink统一平台的机电液一体化系统虚拟样机建模策略。该方法分别采用Simulink软件的不同工具箱建立各领域子系统的仿... 针对机电液一体化系统各学科间参数耦合关联、单一学科的建模仿真分析无法有效反映系统整体性能的问题,提出了基于Simulink统一平台的机电液一体化系统虚拟样机建模策略。该方法分别采用Simulink软件的不同工具箱建立各领域子系统的仿真模型,然后根据各领域子系统间的约束耦合关系,实现基于Simulink同一平台的机电液一体化系统虚拟样机仿真分析。最后,以液压挖掘机为例,建立了挖掘机的整机虚拟样机模型并研制了实验样机,通过仿真与实验结果的对比分析证明了该方法可以有效地实现机械、液压、控制系统的有机集成,高效、可靠地构建机电液一体化系统的非线性仿真模型并进行仿真分析,为机电液一体化系统的优化设计与集成仿真分析提供了有效的支撑平台。 展开更多
关键词 机电液一体化 参数耦合 虚拟样机 多领域建模 非线性仿真
在线阅读 下载PDF
高地应力高温条件裂隙介质地下水非线性渗流研究进展
13
作者 许林 马海春 +4 位作者 王京平 张庆 黄逸航 钱家忠 王万林 《地学前缘》 北大核心 2026年第1期313-327,共15页
随着深部资源勘探、地热能源开发和核废料地质处置等工程活动的深入推进,地下水在高地应力高温环境下的渗流行为成为研究热点,进而关于如何构建适用于高地应力高温条件的多物理场耦合理论模型,以准确反映在真实地应力和温度条件下水岩... 随着深部资源勘探、地热能源开发和核废料地质处置等工程活动的深入推进,地下水在高地应力高温环境下的渗流行为成为研究热点,进而关于如何构建适用于高地应力高温条件的多物理场耦合理论模型,以准确反映在真实地应力和温度条件下水岩相互作用、裂隙形态演化与流体特性变化的动态过程成为重点关注的问题。本文系统综述了高地应力高温条件下地下水渗流的基本理论、实验研究与数值模拟进展,重点阐述了传统立方定律在裂隙渗流模拟中的适用性与局限,并介绍了非达西流与广义达西流的理论拓展,分析了地应力与温度对渗透率的耦合调控机制;总结了多项地应力与热力耦合实验成果及其渗流参数演化规律,探讨了数值模拟中地应力主导下裂隙几何形态演变与渗透通道演化过程;评价了高温环境下矿物热膨胀、热破裂与裂隙粗糙度变化对渗流路径的影响,评估了热水力耦合模型及数据驱动方法的预测潜力;评述了当前理论模型在高地应力高温多场耦合机制、裂隙尺度效应及长期演化方面仍存在不足,展望了未来的研究方向。 展开更多
关键词 高地应力 高温地下水渗流 热水力耦合 裂隙介质 渗透率演化 实验研究 数值模拟
在线阅读 下载PDF
基于GT-power与Simulink的电子节气门控制系统联合仿真
14
作者 周鑫 熊锐 +3 位作者 吴坚 张宗澜 曾恩山 郑月 《现代制造工程》 CSCD 北大核心 2016年第11期1-5,共5页
建立了电子节气门控制系统的仿真模型并设计了PID控制器,构建了GT-power软件与Simulink软件的联合仿真平台,并在此基础上建立了某国产发动机的GT-power模型。通过仿真数据与实验数据对比,证明该平台可用于电子节气门控制系统的设计开发... 建立了电子节气门控制系统的仿真模型并设计了PID控制器,构建了GT-power软件与Simulink软件的联合仿真平台,并在此基础上建立了某国产发动机的GT-power模型。通过仿真数据与实验数据对比,证明该平台可用于电子节气门控制系统的设计开发。进行了电子节气门的PID控制系统联合仿真,分析了该联合仿真平台对于发动机电控单元开发的意义。 展开更多
关键词 发动机 电子节气门 GT-POWER软件 MATLAB/simulINK软件 联合仿真
在线阅读 下载PDF
Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications 被引量:9
15
作者 Jing Tang XING 《力学进展》 EI CSCD 北大核心 2016年第1期95-139,共45页
关键词 linear and nonlinear fluid-solid interactions MIXED FE-substructuremethod MIXED FE-BE METHOD MIXED FE-FD METHOD MIXED FE-SP METHOD fluidsloshing acoustic volume—structure coupling breaking WAVE simulations pressurewaves in fluids LNG ship VLFS-water interaction WAVE energy harvesting
在线阅读 下载PDF
Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code 被引量:10
16
作者 ZENG Wei YANG Sheng-qi +1 位作者 TIAN Wen-ling WEN Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1367-1385,共19页
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass... Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures. 展开更多
关键词 rock mechanics fluid-solid coupling particle flow code (PFC) PERMEABILITY triaxial compression
在线阅读 下载PDF
Fluid solid coupling model based on endochronic damage for roller compacted concrete dam 被引量:4
17
作者 顾冲时 魏博文 +1 位作者 徐镇凯 刘大文 《Journal of Central South University》 SCIE EI CAS 2013年第11期3247-3255,共9页
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m... According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field. 展开更多
关键词 roller compacted concrete dam endochronic damage fluid-solid coupling analytical model
在线阅读 下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:29
18
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
在线阅读 下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:4
19
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 flexible beam rigid-flexible coupling dynamic modeling numerical simulation
在线阅读 下载PDF
Electrodynamic Coupling in the Solar Wind-Magnetosphere-Ionosphere System 被引量:2
20
作者 Hu Youqiu Wang Chi 《空间科学学报》 CAS CSCD 北大核心 2010年第4期321-332,共12页
This paper presents a brief summary of our recent work based on global MHD simulations of the Solar wind-Magnetosphere-Ionosphere (SMI) system with emphasis on the electrodynamic coupling in the system.The main conclu... This paper presents a brief summary of our recent work based on global MHD simulations of the Solar wind-Magnetosphere-Ionosphere (SMI) system with emphasis on the electrodynamic coupling in the system.The main conclusions obtained are summarized as follows.(1) As a main dynamo of the SMI system,the bow shock contributes to both region 1 Field-Aligned Current (FAC) and cross-tail current.Under strong interplanetary driving conditions and moderate Alfv'en Mach numbers,the bow shock's contribution may exceed more than fifty percent of the total of either region 1 or cross-tail currents.(2) In terms of more than 100 simulation runs with due southward Interplanetary Magnetic Field (IMF),we have found a combined parameter f=E sw P sw M A -1/2 (E sw,P sw,and M A are the solar wind electric field,ram pressure,and Alfv'en Mach number,respectively):both the ionospheric transpolar potential and the magnetopause reconnection voltage vary linearly with f for small f,but saturate for large f.(3) The reconnection voltage is approximately fitted by sin 3/2 (θ IMF /2),where θ IMF is the IMF clock angle.The ionospheric transpolar potential,the voltage along the polar cap boundary,and the electric fields along the merging line however defined they may be,respond differently to θ IMF,so it is not justified to take them as substitutes for the reconnection voltage. 展开更多
关键词 耦合系统 电离层 太阳风 磁层顶 国际货币基金组织 电动 行星际磁场 场向电流
在线阅读 下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部