期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
复合支持向量机方法及其在光谱分析中的应用 被引量:12
1
作者 安欣 苏时光 +3 位作者 王韬 徐硕 黄文江 张录达 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第8期1619-1621,共3页
SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证... SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证了CSVM算法。基于模拟研究的思想,随机划分建模集和预测集,比例为55∶16。经过5次划分试验,复合支持向量机方法建模对叶片含氮量的预测值与凯氏定氮实际值之间的平均相关系数为0.89,平均绝对误差为0.088;而传统的支持向量机方法得到的平均相关系数为0.87,平均绝对误差为0.091。由此可见,复合支持向量机方法相对于传统的支持向量机方法预测精度有所提高。文章研究方法的提出为化学计量学定量分析研究给出了新的思路。 展开更多
关键词 复合支持向量机 高光谱 回归模型 叶片含氮量
在线阅读 下载PDF
基于自适应多尺度脑功能连接的局灶性癫痫发作检测方法研究 被引量:4
2
作者 徐嘉阳 杨婷婷 +6 位作者 李雯 李扩 杜昌旺 刘晓芳 盛多铮 闫相国 王刚 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期393-401,共9页
利用长时程脑电图检测癫痫发作是临床中较为广泛的应用,然而这项工作乏味、耗时,且很大程度上依赖于临床医生的自身经验和主观判断,准确性和可重复性也较低。针对长时程脑电图检测癫痫中存在的问题,提出一种基于自适应多尺度脑功能连接... 利用长时程脑电图检测癫痫发作是临床中较为广泛的应用,然而这项工作乏味、耗时,且很大程度上依赖于临床医生的自身经验和主观判断,准确性和可重复性也较低。针对长时程脑电图检测癫痫中存在的问题,提出一种基于自适应多尺度脑功能连接的癫痫发作检测方法(AMBFC),并选取10例局灶性癫痫患者的发作期和非发作期的样本作为研究对象。首先在一个滑动时间窗内,通过多元经验模态分解(MEMD)提取19通道脑电信号的7个本征模函数(IMF)分量及残差;然后建立多变量自回归(MVAR)模型,利用有向传递函数(DTF)提取流出信息强度,进行特征组合,并通过主成分分析(PCA)降维保留原始特征数目的85%;最后经代价敏感支持向量机(CSVM)分类区分发作期和非发作期脑电,并通过五重交叉验证进行癫痫发作检测算法的效果评价。结果表明,AMBFC算法检测脑电癫痫发作得到的平均准确率为98.6%,精确率为81.9%,召回率为81.4%,F2值为0.80。与各IMF分量、DTF-CSVM算法等检测结果相比,AMBFC算法更具有优越性。有望应用于长时程脑电的实时监测。 展开更多
关键词 脑电信号 癫痫发作 多元经验模态分解(MEMD) 有向传递函数(DTF) 代价敏感支持向量机(csvm)
在线阅读 下载PDF
Online hierarchical recognition method for target tactical intention in beyond-visual-range air combat 被引量:6
3
作者 Zhen Yang Zhi-xiao Sun +3 位作者 Hai-yin Piao Ji-chuan Huang De-yun Zhou Zhang Ren 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1349-1361,共13页
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp... Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat. 展开更多
关键词 Beyond-visual-range(BVR)air combat Tactical intention recognition Hierarchical recognition model Cascaded support vector machine(csvm) Trajectory decomposition Maneuver element
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部