期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于代价敏感神经网络集成模型的类别不平衡问题研究 被引量:2
1
作者 张俊杰 曹丽 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第11期1573-1579,共7页
在解决类别不平衡问题的过程中,传统分类模型往往偏向对大类别样本的学习,影响模型分类效果。基于此,文章从数据采样、模型选择2方面入手,给出代价敏感神经网络集成(cost-sensitive neural network ensemble,CSNN_Ensemble)模型。首先... 在解决类别不平衡问题的过程中,传统分类模型往往偏向对大类别样本的学习,影响模型分类效果。基于此,文章从数据采样、模型选择2方面入手,给出代价敏感神经网络集成(cost-sensitive neural network ensemble,CSNN_Ensemble)模型。首先通过随机下采样,得到多组训练数据集;其次对每组训练数据集训练BP神经网络,并结合代价矩阵构造多个代价敏感神经网络;最后以代价敏感神经网络为基学习器构造并行集成模型,并以投票的方式进行最终决策。实验结果表明,该模型在F 1值、AUC值和期望总体代价3种性能方面表现优越,并具有一定的鲁棒性。 展开更多
关键词 类别不平衡 随机下采样 代价敏感神经网络(csnn) 集成模型 Friedman检验
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部