Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en...Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.展开更多
Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematicall...Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.展开更多
It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance...It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.展开更多
The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the...The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.展开更多
Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite co...Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite coating on mild steel was reported with the view to reduce this problem. The SiO_2 was varies from 5 to 25 wt% in the deposition. The microstructure, hardness values and potentiodynamic polarization in simulated sea water were determined. The results show that XRD pattern of the Ni Co deposited mild steel revealed the presence hard phases of NiO, Co_5Ni, Co_2Ni_3, Ni Co5 while that of Ni-CoSiO_2 deposited mild steel revealed the presence harder phases of NiOSiO_2, CoNi_7Si_2, Co_5Ni_2Si_3. The NiCo-25 SiO_2 deposited sample has smaller particle size than Ni-10 Co coating. Coating thickness of 110.7 mm was obtained for Ni-10 Co coating, while coating thickness of 135.7, 157.7, 165.0 mm were obtained at Ni-10 Co-x SiO_2(x=10, 15, 25 wt%). 99.90% corrosion resistance was achieved at Ni-Co-25 SiO_2. This improvement in corrosion resistance after composites coating could be attributed to the hard and fine structure obtained after coating.展开更多
The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were...The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.展开更多
Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on th...Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on the densification, microstructure, and microhardness and corrosion behaviour of Ti-6 Al-4 V was investigated.An increase in microhardness value was recorded from 325.46 HV_(0.1) to 585.73 HV_(0.1). X-ray diffraction(XRD) analysis showed that the intensity of diffraction peaks of Si3 N4 phase in the composites increased.The sintered Ti-6 Al-4 V reinforced with Si_3 N_4 compacts revealed the non-existence of intermediate phases, such as TiSi_2(titanium silicide) which was expected. SEM analysis of the spark plasma sintered composites revealed a and β phase microstructures in Ti-6 Al-4 V with uniform distribution of Si3 N4 particulates in the matrix. The corrosion resistance property of the material was improved by the addition of Si_3 N_4 from 0.986629 mm/year to 0.030547 mm/year.展开更多
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters...In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.展开更多
The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size ...The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.展开更多
The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties an...The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.展开更多
In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and ...In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and formation mechanism of the coatings were investigated.The hot corrosion behaviors of DZ125 alloy and the coatings in molten salt environment of 25%K2SO4+75%Na2SO4(mass fraction)at 900°C were studied.Results show that the obtained Al-Ce-Y coatings were mainly composed of Al3Ni2,Al3Ni and Cr7Ni3,with a thickness of about 120μm.After hot corrosion test,DZ125 alloy suffered catastrophic hot corrosion and serious internal oxidation and internal sulfidation arose.Two layers of corrosion products formed on surfaces of DZ125 alloy,including the outer layer consisting of Cr2O3 and NiCr2O4,and the inner layer of Al2O3,Ni3S2 and Ni-base solid solution.After being coated with Al-Ce-Y coating,the hot corrosion resistance of DZ125 alloy is improved notably,due to the formation of a dense scale mainly consisting of Al-rich Al2O3 in the coating layer.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large...Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.展开更多
The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
Microbiologically-induced concrete corrosion(MICC)refers to chemical reactions between biologically produced sulphuric acid and with hydration products in the hardened concrete paste,resulting in an early reduction of...Microbiologically-induced concrete corrosion(MICC)refers to chemical reactions between biologically produced sulphuric acid and with hydration products in the hardened concrete paste,resulting in an early reduction of strength,deterioration,and very severe circumstances,structural failure.This paper explores the bactericidal characteristics of cementitious materials with surface coated with modified zeolite-polyurethane.The zeolite-polyurethane coating incorporated with silver was studied in environments inoculated with A.thiooxidans bacteria for 8 consecutive weeks.The antibacterial characteristics were evaluated in terms of pH,optical density(OD),sulphate production and bacteria count to determine the effectiveness of the zeolite-polyurethane coatings in environments inoculated with A.thiooxidans bacteria producing the sulphuric acid.The results revealed that the samples incorporated with silver modified zeolites generally showed antibacterial performance(regardless of the zeolite type)compared with unmodified polyurethane coating.This was evaluated by the lack of bacteria attachment and the deformed microcolonies on the sample surface,lag in pH reduction,increase in OD,and sulphate production.The silver zeolites gained their antibacterial performance from the release of silver ions(Ag^(+))when the sample comes into contact with aqueous solutions.This results in the inhibition of cell functions of the bacteria and subsequently causes cell damage.展开更多
In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors...In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors of the TiAl alloy with and without Si-Al-Y coatings are compared to illustrate the factors and corresponding mechanism in molten salt environment of 25 wt%K2SO4 and 75 wt%Na2SO4 at 900°C.The obtained Si-Al-Y coating was mainly composed of a TiSi2 outer layer,a(Ti,X)5Si4 and(Ti,X)5Si3(X represents Nb or Cr element)middle layer,a TiAl2 inner layer and a Al-rich inter-diffusion zone.The inter-phase selective corrosion containing corrosion pits extending alongα2 phase from lamellar interfaces in hot corrosion tested TiAl alloy was observed.However,by being coated with Si-Al-Y coating,the hot corrosion performance of TiAl alloy was improved remarkably.展开更多
The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction....The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.展开更多
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m...The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.展开更多
基金National Natural Science Foundation of China(12002196,12102140)。
文摘Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.
基金Projects(82171030,81870678)supported by the National Natural Science Foundation of China。
文摘Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by International Cooperative Scientific Research Platform of SUES,China。
文摘It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.
基金Project(51501228)supported by the National Natural Science Foundation of ChinaProject(202109)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.
文摘Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite coating on mild steel was reported with the view to reduce this problem. The SiO_2 was varies from 5 to 25 wt% in the deposition. The microstructure, hardness values and potentiodynamic polarization in simulated sea water were determined. The results show that XRD pattern of the Ni Co deposited mild steel revealed the presence hard phases of NiO, Co_5Ni, Co_2Ni_3, Ni Co5 while that of Ni-CoSiO_2 deposited mild steel revealed the presence harder phases of NiOSiO_2, CoNi_7Si_2, Co_5Ni_2Si_3. The NiCo-25 SiO_2 deposited sample has smaller particle size than Ni-10 Co coating. Coating thickness of 110.7 mm was obtained for Ni-10 Co coating, while coating thickness of 135.7, 157.7, 165.0 mm were obtained at Ni-10 Co-x SiO_2(x=10, 15, 25 wt%). 99.90% corrosion resistance was achieved at Ni-Co-25 SiO_2. This improvement in corrosion resistance after composites coating could be attributed to the hard and fine structure obtained after coating.
文摘The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.
基金financial support from National Research Foundation(NRF), Pretoria, South Africa
文摘Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on the densification, microstructure, and microhardness and corrosion behaviour of Ti-6 Al-4 V was investigated.An increase in microhardness value was recorded from 325.46 HV_(0.1) to 585.73 HV_(0.1). X-ray diffraction(XRD) analysis showed that the intensity of diffraction peaks of Si3 N4 phase in the composites increased.The sintered Ti-6 Al-4 V reinforced with Si_3 N_4 compacts revealed the non-existence of intermediate phases, such as TiSi_2(titanium silicide) which was expected. SEM analysis of the spark plasma sintered composites revealed a and β phase microstructures in Ti-6 Al-4 V with uniform distribution of Si3 N4 particulates in the matrix. The corrosion resistance property of the material was improved by the addition of Si_3 N_4 from 0.986629 mm/year to 0.030547 mm/year.
基金Project(2020E0264) supported by the Xinjiang Science and Technology Project Plan of Autonomous Region,ChinaProject(2020D01C030) supported by the Autonomous Region Natural Science Foundation,China。
文摘In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.
基金Project(2021zzts0152) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1837207) supported by the National Natural Science Foundation of China。
文摘The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.
基金Project(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(41423040204)supported by National Key Laboratory of Light Weight and High Strength Structural Materials Equipment Pre-research Laboratory Foundation,China。
文摘The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.
基金Project(51961003)supported by the National Natural Science Foundation of ChinaProject(NGY2018-148)supported by the Science and Technology Research of Ningxia Colleges,ChinaProject(NZ16083)supported by Key Program of Natural Science Foundation of Ningxia,China
文摘In order to improve the hot corrosion resistance of DZ125 alloy,Ce-Y modified aluminum coatings were prepared on DZ125 alloy by pack cementation process at 950°C for 2 h.The microstructure,phase constitution and formation mechanism of the coatings were investigated.The hot corrosion behaviors of DZ125 alloy and the coatings in molten salt environment of 25%K2SO4+75%Na2SO4(mass fraction)at 900°C were studied.Results show that the obtained Al-Ce-Y coatings were mainly composed of Al3Ni2,Al3Ni and Cr7Ni3,with a thickness of about 120μm.After hot corrosion test,DZ125 alloy suffered catastrophic hot corrosion and serious internal oxidation and internal sulfidation arose.Two layers of corrosion products formed on surfaces of DZ125 alloy,including the outer layer consisting of Cr2O3 and NiCr2O4,and the inner layer of Al2O3,Ni3S2 and Ni-base solid solution.After being coated with Al-Ce-Y coating,the hot corrosion resistance of DZ125 alloy is improved notably,due to the formation of a dense scale mainly consisting of Al-rich Al2O3 in the coating layer.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.
基金Project(2016YFB1100101)supported by the National Key Research and Development Program of China。
文摘Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion.
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al_(5)FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm^(2))of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm^(2)),and the polarization resistance(9252Ω·cm^(2))was 71.3%higher than the untreated alloy(2654Ω·cm^(2)).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金Project(J130000.2524.04H87) supported by the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia。
文摘Microbiologically-induced concrete corrosion(MICC)refers to chemical reactions between biologically produced sulphuric acid and with hydration products in the hardened concrete paste,resulting in an early reduction of strength,deterioration,and very severe circumstances,structural failure.This paper explores the bactericidal characteristics of cementitious materials with surface coated with modified zeolite-polyurethane.The zeolite-polyurethane coating incorporated with silver was studied in environments inoculated with A.thiooxidans bacteria for 8 consecutive weeks.The antibacterial characteristics were evaluated in terms of pH,optical density(OD),sulphate production and bacteria count to determine the effectiveness of the zeolite-polyurethane coatings in environments inoculated with A.thiooxidans bacteria producing the sulphuric acid.The results revealed that the samples incorporated with silver modified zeolites generally showed antibacterial performance(regardless of the zeolite type)compared with unmodified polyurethane coating.This was evaluated by the lack of bacteria attachment and the deformed microcolonies on the sample surface,lag in pH reduction,increase in OD,and sulphate production.The silver zeolites gained their antibacterial performance from the release of silver ions(Ag^(+))when the sample comes into contact with aqueous solutions.This results in the inhibition of cell functions of the bacteria and subsequently causes cell damage.
基金Project(2020AAC02025)supported by the Natural Science Foundation of Ningxia Province,ChinaProject(51961003)supported by the National Natural Science Foundation of China+1 种基金Project(TJGC2019040)supported by the Ningxia Youth Talents Supporting Program,ChinaProject(2020xyzc103)supported by the Foundation of North Minzu University,China。
文摘In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment,Si-Al-Y coatings were fabricated by pack cementation process at 1050℃for 4 h.Corrosion behaviors of the TiAl alloy with and without Si-Al-Y coatings are compared to illustrate the factors and corresponding mechanism in molten salt environment of 25 wt%K2SO4 and 75 wt%Na2SO4 at 900°C.The obtained Si-Al-Y coating was mainly composed of a TiSi2 outer layer,a(Ti,X)5Si4 and(Ti,X)5Si3(X represents Nb or Cr element)middle layer,a TiAl2 inner layer and a Al-rich inter-diffusion zone.The inter-phase selective corrosion containing corrosion pits extending alongα2 phase from lamellar interfaces in hot corrosion tested TiAl alloy was observed.However,by being coated with Si-Al-Y coating,the hot corrosion performance of TiAl alloy was improved remarkably.
基金Project(51901207) supported by the National Natural Science Foundation of ChinaProject(2018M632796) supported by the China Postdoctoral Science FoundationProjects(19A430024, 21A430037) supported by the Plan of Henan Key Scientific Research Project of Universities,China。
文摘The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting(SLM) at platform temperatures of 35 ℃ and 200 ℃, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 ℃ along height direction is basically the same due to a uniform microstructure;While the corrosion resistance of the alloy plate built at platform temperature of 200 ℃ along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 ℃ are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 ℃. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 ℃ is higher, and presents a gradually decreasing trend along height direction.
基金Project(2012CB619502)supported by the National Basic Research Program of ChinaProject(2016YFB0300800)supported by the National Key Research and Development Program of China+1 种基金Project(CALT201507)supported by the CALT Research Innovation Partnership Fund,ChinaProject(HPCM-201403)supported by the State Key Laboratory of High Performance Complex Manufacturing,China
文摘The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.