In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ...This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.展开更多
Currently,the use of intelligent systems for the automatic recognition of targets in the fields of defence and military has increased significantly.The primary advantage of these systems is that they do not need human...Currently,the use of intelligent systems for the automatic recognition of targets in the fields of defence and military has increased significantly.The primary advantage of these systems is that they do not need human participation in target recognition processes.This paper uses the particle swarm optimization(PSO)algorithm to select the optimal features in the micro-Doppler signature of sonar targets.The microDoppler effect is referred to amplitude/phase modulation on the received signal by rotating parts of a target such as propellers.Since different targets'geometric and physical properties are not the same,their micro-Doppler signature is different.This Inconsistency can be considered a practical issue(especially in the frequency domain)for sonar target recognition.Despite using 128-point fast Fourier transform(FFT)for the feature extraction step,not all extracted features contain helpful information.As a result,PSO selects the most optimum and valuable features.To evaluate the micro-Doppler signature of sonar targets and the effect of feature selection on sonar target recognition,the simplest and most popular machine learning algorithm,k-nearest neighbor(k-NN),is used,which is called k-PSO in this paper because of the use of PSO for feature selection.The parameters measured are the correct recognition rate,reliability rate,and processing time.The simulation results show that k-PSO achieved a 100%correct recognition rate and reliability rate at 19.35 s when using simulated data at a 15 dB signal-tonoise ratio(SNR)angle of 40°.Also,for the experimental dataset obtained from the cavitation tunnel,the correct recognition rate is 98.26%,and the reliability rate is 99.69%at 18.46s.Therefore,the k-PSO has an encouraging performance in automatically recognizing sonar targets when using experimental datasets and for real-world use.展开更多
Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the ...Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.展开更多
To avoid the curse of dimensionality, text categorization (TC) algorithms based on machine learning (ML) have to use an feature selection (FS) method to reduce the dimensionality of feature space. Although havin...To avoid the curse of dimensionality, text categorization (TC) algorithms based on machine learning (ML) have to use an feature selection (FS) method to reduce the dimensionality of feature space. Although having been widely used, FS process will generally cause information losing and then have much side-effect on the whole performance of TC algorithms. On the basis of the sparsity characteristic of text vectors, a new TC algorithm based on lazy feature selection (LFS) is presented. As a new type of embedded feature selection approach, the LFS method can greatly reduce the dimension of features without any information losing, which can improve both efficiency and performance of algorithms greatly. The experiments show the new algorithm can simultaneously achieve much higher both performance and efficiency than some of other classical TC algorithms.展开更多
Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.How...Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.However,there are redundant and irrelevant features in the software defect datasets affecting the performance of defect predictors.In order to identify and remove the redundant and irrelevant features in software defect datasets,we propose ReliefF-based clustering(RFC),a clusterbased feature selection algorithm.Then,the correlation between features is calculated based on the symmetric uncertainty.According to the correlation degree,RFC partitions features into k clusters based on the k-medoids algorithm,and finally selects the representative features from each cluster to form the final feature subset.In the experiments,we compare the proposed RFC with classical feature selection algorithms on nine National Aeronautics and Space Administration(NASA)software defect prediction datasets in terms of area under curve(AUC)and Fvalue.The experimental results show that RFC can effectively improve the performance of SDP.展开更多
To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel eli...To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel elitist roles based dynamics equilibrium strategy is established, and both immigration and emigration of elitists are able to be self-adaptive to balance between exploration and exploitation for feature selection. Secondly, the utility matrix of trust margins is introduced to the model of multilevel elitist roles to enhance various elitist roles' performance of searching the optimal feature subsets, and the win-win utility solutions for feature selec- tion can be attained. Meanwhile, a novel ensemble quantum game strategy is designed as an intriguing exhibiting structure to perfect the dynamics equilibrium of multilevel elitist roles. Finally, the en- semble manner of multilevel elitist roles is employed to achieve the global minimal feature subset, which will greatly improve the fea- sibility and effectiveness. Experiment results show the proposed EERQG algorithm has superiority compared to the existing feature selection algorithms.展开更多
The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good c...The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness.展开更多
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272257,12102292,12032006)the special fund for Science and Technology Innovation Teams of Shanxi Province(Nos.202204051002006).
文摘This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.
文摘Currently,the use of intelligent systems for the automatic recognition of targets in the fields of defence and military has increased significantly.The primary advantage of these systems is that they do not need human participation in target recognition processes.This paper uses the particle swarm optimization(PSO)algorithm to select the optimal features in the micro-Doppler signature of sonar targets.The microDoppler effect is referred to amplitude/phase modulation on the received signal by rotating parts of a target such as propellers.Since different targets'geometric and physical properties are not the same,their micro-Doppler signature is different.This Inconsistency can be considered a practical issue(especially in the frequency domain)for sonar target recognition.Despite using 128-point fast Fourier transform(FFT)for the feature extraction step,not all extracted features contain helpful information.As a result,PSO selects the most optimum and valuable features.To evaluate the micro-Doppler signature of sonar targets and the effect of feature selection on sonar target recognition,the simplest and most popular machine learning algorithm,k-nearest neighbor(k-NN),is used,which is called k-PSO in this paper because of the use of PSO for feature selection.The parameters measured are the correct recognition rate,reliability rate,and processing time.The simulation results show that k-PSO achieved a 100%correct recognition rate and reliability rate at 19.35 s when using simulated data at a 15 dB signal-tonoise ratio(SNR)angle of 40°.Also,for the experimental dataset obtained from the cavitation tunnel,the correct recognition rate is 98.26%,and the reliability rate is 99.69%at 18.46s.Therefore,the k-PSO has an encouraging performance in automatically recognizing sonar targets when using experimental datasets and for real-world use.
基金Supported by National Natural Science Foundation of P.R.China(60135020)the Project of National Defense Basic Research of P.R.China(A1420061266) the Foundation for University Key Teacher by the Ministry of Education
文摘Neuro-fuzzy(NF)networks are adaptive fuzzy inference systems(FIS)and have been applied to feature selection by some researchers.However,their rule number will grow exponentially as the data dimension increases.On the other hand,feature selection algorithms with artificial neural networks(ANN)usually require normalization of input data,which will probably change some characteristics of original data that are important for classification.To overcome the problems mentioned above,this paper combines the fuzzification layer of the neuro-fuzzy system with the multi-layer perceptron(MLP)to form a new artificial neural network.Furthermore,fuzzification strategy and feature measurement based on membership space are proposed for feature selection. Finally,experiments with both natural and artificial data are carried out to compare with other methods,and the results approve the validity of the algorithm.
文摘To avoid the curse of dimensionality, text categorization (TC) algorithms based on machine learning (ML) have to use an feature selection (FS) method to reduce the dimensionality of feature space. Although having been widely used, FS process will generally cause information losing and then have much side-effect on the whole performance of TC algorithms. On the basis of the sparsity characteristic of text vectors, a new TC algorithm based on lazy feature selection (LFS) is presented. As a new type of embedded feature selection approach, the LFS method can greatly reduce the dimension of features without any information losing, which can improve both efficiency and performance of algorithms greatly. The experiments show the new algorithm can simultaneously achieve much higher both performance and efficiency than some of other classical TC algorithms.
基金supported by the National Key Research and Development Program of China(2018YFB1003702)the National Natural Science Foundation of China(62072255).
文摘Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.However,there are redundant and irrelevant features in the software defect datasets affecting the performance of defect predictors.In order to identify and remove the redundant and irrelevant features in software defect datasets,we propose ReliefF-based clustering(RFC),a clusterbased feature selection algorithm.Then,the correlation between features is calculated based on the symmetric uncertainty.According to the correlation degree,RFC partitions features into k clusters based on the k-medoids algorithm,and finally selects the representative features from each cluster to form the final feature subset.In the experiments,we compare the proposed RFC with classical feature selection algorithms on nine National Aeronautics and Space Administration(NASA)software defect prediction datasets in terms of area under curve(AUC)and Fvalue.The experimental results show that RFC can effectively improve the performance of SDP.
基金supported by the National Natural Science Foundation of China(6113900261171132+4 种基金61300167)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technologythe Qing Lan Project of Jiangsu Provincethe Starting Foundation for Doctoral Scientific Research,Nantong University(14B20)
文摘To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel elitist roles based dynamics equilibrium strategy is established, and both immigration and emigration of elitists are able to be self-adaptive to balance between exploration and exploitation for feature selection. Secondly, the utility matrix of trust margins is introduced to the model of multilevel elitist roles to enhance various elitist roles' performance of searching the optimal feature subsets, and the win-win utility solutions for feature selec- tion can be attained. Meanwhile, a novel ensemble quantum game strategy is designed as an intriguing exhibiting structure to perfect the dynamics equilibrium of multilevel elitist roles. Finally, the en- semble manner of multilevel elitist roles is employed to achieve the global minimal feature subset, which will greatly improve the fea- sibility and effectiveness. Experiment results show the proposed EERQG algorithm has superiority compared to the existing feature selection algorithms.
基金Supported by National Natural Science Foundation of China(61071131,61271388) Natural Science Foundation of Beijing(4122040)+1 种基金 Research Project of Tsinghua University(2012Z01011) Doctoral Fund of Ministry of Education of China(20120002110036)
基金Supported by National Natural Science Foundation of China(60575036),Natural Science Foundation of Heilongjiang Province of China(F0316),the Science and Technology Foundation for Innovative Talents of Harbin City of China(2007RFXXG023),and the Science Foundation for Top Talents with the Spirit of Innovation of Harbin University of Science and Technology
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(E2019203418)supported by the Natural Science Foundation of Hebei Province,China。
文摘The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness.