期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法 被引量:5
1
作者 张硕 余世明 《高技术通讯》 CAS 2021年第11期1145-1153,共9页
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机... 目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。 展开更多
关键词 新冠肺炎(covid-19)电子计算机断层扫描(ct)图像 图像去噪 多尺度特征 深浅通道并行 拆分卷积
在线阅读 下载PDF
基于深度学习的新型冠状病毒肺炎诊断研究综述 被引量:8
2
作者 唐江平 周晓飞 +4 位作者 贺鑫 褚晓文 李世锋 常庆蕊 张继勇 《计算机工程》 CAS CSCD 北大核心 2021年第5期1-15,共15页
新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快速准确地检测和诊断COVID-19对于疫情控制至关重要。目前COVID-19检测诊断方法主要包括核酸检测和基于医学影像的人工诊断,但是核酸检测耗... 新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快速准确地检测和诊断COVID-19对于疫情控制至关重要。目前COVID-19检测诊断方法主要包括核酸检测和基于医学影像的人工诊断,但是核酸检测耗时较长并且需要专用的测试盒,而基于医学影像的人工诊断过于依赖专业知识,分析耗时较长且难以发现隐匿病变。随着X射线图像和计算机断层扫描图像数据集的相继提出,科研人员在此基础上构建基于深度学习的COVID-19检测诊断模型,有效辅助了医学专家对COVID-19的高效诊断治疗。总结用于COVID-19检测诊断的主流影像数据集和相关评价指标,以模型任务和影像数据类型2个角度分类介绍现有基于深度学习的COVID-19检测诊断模型,从骨干网络、数据集、影像类型、性能表现、分类种类和开源情况6个维度进行比较与分析。此外,介绍用于抗击COVID-19的优秀应用系统,并探讨该领域的未来发展趋势。 展开更多
关键词 新型冠状病毒肺炎 深度学习 X射线图像 计算机断层扫描图像 检测诊断模型 疫情控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部