期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Framework for COVID-19 Segmentation and Classification Based on Deep Learning of Computed Tomography Lung Images
1
作者 Wessam M.Salama Moustafa H.Aly 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期246-256,共11页
Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning me... Corona Virus Disease 2019(COVID-19) has affected millions of people worldwide and caused more than6.3 million deaths(World Health Organization, June 2022). Increased attempts have been made to develop deep learning methods to diagnose COVID-19 based on computed tomography(CT) lung images. It is a challenge to reproduce and obtain the CT lung data, because it is not publicly available. This paper introduces a new generalized framework to segment and classify CT images and determine whether a patient is tested positive or negative for COVID-19 based on lung CT images. In this work, many different strategies are explored for the classification task.ResNet50 and VGG16 models are applied to classify CT lung images into COVID-19 positive or negative. Also,VGG16 and ReNet50 combined with U-Net, which is one of the most used architectures in deep learning for image segmentation, are employed to segment CT lung images before the classifying process to increase system performance. Moreover, the image size dependent normalization technique(ISDNT) and Wiener filter are utilized as the preprocessing techniques to enhance images and noise suppression. Additionally, transfer learning and data augmentation techniques are performed to solve the problem of COVID-19 CT lung images deficiency, therefore the over-fitting of deep models can be avoided. The proposed frameworks, which comprised of end-to-end, VGG16,ResNet50, and U-Net with VGG16 or ResNet50, are applied on the dataset that is sourced from COVID-19 lung CT images in Kaggle. The classification results show that using the preprocessed CT lung images as the input for U-Net hybrid with ResNet50 achieves the best performance. The proposed classification model achieves the 98.98%accuracy(ACC), 98.87% area under the ROC curve(AUC), 98.89% sensitivity(Se), 97.99 % precision(Pr), 97.88%F-score, and 1.8974-seconds computational time. 展开更多
关键词 Augmentation CLASSIFICATION computed tomography(ct) Corona Virus disease 2019(covid-19) deep learning ResNet50 SEGMENTATION U-Net VGG16
在线阅读 下载PDF
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法 被引量:4
2
作者 张硕 余世明 《高技术通讯》 CAS 2021年第11期1145-1153,共9页
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机... 目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。 展开更多
关键词 新冠肺炎(covid-19)电子计算机断层扫描(ct)图像 图像去噪 多尺度特征 深浅通道并行 拆分卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部