Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin cat...Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.展开更多
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves...The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.展开更多
Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural proper...Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.展开更多
In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure tha...In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.展开更多
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core co...In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.展开更多
This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using t...This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.展开更多
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene(CL-20/TNT)composite was prepared by spray-drying method in which sensitive high energy explosive(CL-20)was coated with in...The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene(CL-20/TNT)composite was prepared by spray-drying method in which sensitive high energy explosive(CL-20)was coated with insensitive explosive(TNT).The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy(SEM),Transmission electron microscopy(TEM),Laser particle size analyzer,X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),differential scanning calorimetry(DSC),impact sensitivity test and detonation performance.The results of SEM,TEM,XPS and XRD show that e-CL-20 particles are coated by TNT.When the ratio of CL-20/TNT is 75/25,core-shell structure is well formed,and thickness of the shell is about 20e30 nm.And the analysis of heat and impact show that with the increase of TNT content,the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material(CL-20),but also greatly reduce the impact sensitivity.Compared with the CL-20/TNT mixture(75/25)at the same ratio,the characteristic drop height of core-shell CL-20/TNT composite(75/25)increased by 47.6%and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites.Therefore,the preparation of the core-shell composites can be regarded as a unique means,by which the composites are characterized by controllable decomposition rate,high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.展开更多
Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTF...A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.展开更多
Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of...Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of inflatable wings such as flutter are nonnegligible in flight.By designing a certain angle between the inflatable beam and the wing span,the structural dynamic and even the aeroelastic performance of the inflatable wing can be effectively improved.Based on the analysis of the mechanical and geometric characteristics of the inflatable structure,a new inflatable wing with sweep arranged inflatable beams is proposed,and the main design variables and methods are analyzed.For purpose of investigating the aeroelastic performance of the swept baffled inflatable wing,the modal behaviors by considering the wet mode are studied.In consideration of the deficiencies of the traditional wet modal analysis method,by introducing the influence on the additional stiffness of flow field,an added massstiffness method is proposed in this paper,and the advantages are verified by ground vibration experiments.On this basis,the effects of baffles sweep angle,pressure,and boundary conditions on the modal parameters and aeroelastic performance of inflatable wing are analyzed.The results show that the aeroelastic performance of the inflatable wing can be designed by changing the baffles sweep angle,which is enlightened for the aeroelastic tailoring design on inflatable wings.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a par...In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.展开更多
基金Projects(J21103045,J1210040,J1103312) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
基金the support for this work by National Natural Science Foundation of China(Grant Nos.22175139 and 22105156)。
文摘The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.
基金Project(2017QNA21)supported by the Fundamental Research Funds for the Central Universities of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.
基金supported by the Chinese Studentship Council(Grant No.201908060224)the National Natural Science Foundation of China (Grant Nos.11872310,11972308)。
文摘In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.
基金Project(51475267) supported by the National Natural Science Foundation of China
文摘In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.
文摘This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.
文摘The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene(CL-20/TNT)composite was prepared by spray-drying method in which sensitive high energy explosive(CL-20)was coated with insensitive explosive(TNT).The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy(SEM),Transmission electron microscopy(TEM),Laser particle size analyzer,X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),differential scanning calorimetry(DSC),impact sensitivity test and detonation performance.The results of SEM,TEM,XPS and XRD show that e-CL-20 particles are coated by TNT.When the ratio of CL-20/TNT is 75/25,core-shell structure is well formed,and thickness of the shell is about 20e30 nm.And the analysis of heat and impact show that with the increase of TNT content,the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material(CL-20),but also greatly reduce the impact sensitivity.Compared with the CL-20/TNT mixture(75/25)at the same ratio,the characteristic drop height of core-shell CL-20/TNT composite(75/25)increased by 47.6%and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites.Therefore,the preparation of the core-shell composites can be regarded as a unique means,by which the composites are characterized by controllable decomposition rate,high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
基金This work was supported by the National Natural Science Foundation of China(No.51571033,11804022)the Science and Technology on Transient Impact Laboratory Foundation(No.6142606183208).
文摘A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.
基金supported by National Natural Science Foundation of China(Grant No.11902029)。
文摘Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of inflatable wings such as flutter are nonnegligible in flight.By designing a certain angle between the inflatable beam and the wing span,the structural dynamic and even the aeroelastic performance of the inflatable wing can be effectively improved.Based on the analysis of the mechanical and geometric characteristics of the inflatable structure,a new inflatable wing with sweep arranged inflatable beams is proposed,and the main design variables and methods are analyzed.For purpose of investigating the aeroelastic performance of the swept baffled inflatable wing,the modal behaviors by considering the wet mode are studied.In consideration of the deficiencies of the traditional wet modal analysis method,by introducing the influence on the additional stiffness of flow field,an added massstiffness method is proposed in this paper,and the advantages are verified by ground vibration experiments.On this basis,the effects of baffles sweep angle,pressure,and boundary conditions on the modal parameters and aeroelastic performance of inflatable wing are analyzed.The results show that the aeroelastic performance of the inflatable wing can be designed by changing the baffles sweep angle,which is enlightened for the aeroelastic tailoring design on inflatable wings.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
文摘In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints.