Aluminum(Al)powder is widely applied in thermobaric explosives due to its high energy density and favorable reaction kinetics.However,the inert oxide layer(Al_(2)O_(3))on Al particles limits combustion reactivity and ...Aluminum(Al)powder is widely applied in thermobaric explosives due to its high energy density and favorable reaction kinetics.However,the inert oxide layer(Al_(2)O_(3))on Al particles limits combustion reactivity and energy efficiency.Fluoride-based surface modification has been developed as an effective approach to address this issue.Here,four classical fluoropolymers(F11,F14,PVDF,PTFE)are employed as coatings to prepare core-shell Al/Fluoropolymer.The combustion experimental results demonstrate that the core-shell Al/PTFE exhibits the highest flame propagation rate(52.88 mm·ms^(-1))and pressure output(109.02 k Pa)performance.Consequently,core-shell Al/PTFE is selected as a high-energy fuel to prepare RDX/Al/PTFE microspheres via the emulsion and solvent evaporation method,which can enhance the energy performance of RDX.The effects of the core-shell Al/PTFE ratio and RDX content on the combustion heat and pressure output are systematically investigated.The peak pressure reaches a maximum of 187.8 k Pa when the mass ratio of RDX,Al,and PTFE is 60:25:10.Additionally,RDX/Al/PTFE microspheres exhibit significantly higher laser-induced air shock velocities,detonation heat,and detonation pressure than those of pure RDX and RDX/Al.The mechanism underlying the enhanced reactivity and energetic performance is attributed to the ability of PTFE to etch the inert Al_(2)O_(3)shell on the surface of Al particles,thereby improving post-combustion reactions and significantly increasing the overall energy output of RDX explosives.This work offers a novel design strategy for high-energy structural thermobaric explosives for the practical applications.展开更多
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves...The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.T2222027 and 12202416)。
文摘Aluminum(Al)powder is widely applied in thermobaric explosives due to its high energy density and favorable reaction kinetics.However,the inert oxide layer(Al_(2)O_(3))on Al particles limits combustion reactivity and energy efficiency.Fluoride-based surface modification has been developed as an effective approach to address this issue.Here,four classical fluoropolymers(F11,F14,PVDF,PTFE)are employed as coatings to prepare core-shell Al/Fluoropolymer.The combustion experimental results demonstrate that the core-shell Al/PTFE exhibits the highest flame propagation rate(52.88 mm·ms^(-1))and pressure output(109.02 k Pa)performance.Consequently,core-shell Al/PTFE is selected as a high-energy fuel to prepare RDX/Al/PTFE microspheres via the emulsion and solvent evaporation method,which can enhance the energy performance of RDX.The effects of the core-shell Al/PTFE ratio and RDX content on the combustion heat and pressure output are systematically investigated.The peak pressure reaches a maximum of 187.8 k Pa when the mass ratio of RDX,Al,and PTFE is 60:25:10.Additionally,RDX/Al/PTFE microspheres exhibit significantly higher laser-induced air shock velocities,detonation heat,and detonation pressure than those of pure RDX and RDX/Al.The mechanism underlying the enhanced reactivity and energetic performance is attributed to the ability of PTFE to etch the inert Al_(2)O_(3)shell on the surface of Al particles,thereby improving post-combustion reactions and significantly increasing the overall energy output of RDX explosives.This work offers a novel design strategy for high-energy structural thermobaric explosives for the practical applications.
基金the support for this work by National Natural Science Foundation of China(Grant Nos.22175139 and 22105156)。
文摘The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.