The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves...The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.展开更多
The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, ...The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, conductivity, transmittance of polyaniline(PAN) latex and its powders were studied. The results show that the properties of PAN prepared through the emulsion polymerization are influenced by the amount of water used in the polymerization. The morphology of PAN varies with the water phase concentration used in the polymerization, which may result in the change of properties of PAN latex and its powders. When the volume fraction of water (φ) is about 20% 30%, the prepared PAN powder has higher conductivity, and the PAN latex has appropriate viscosity and particle size. The consumption of xylene was reduced at high φ value.展开更多
Hollow particles were prepared by the treatment of styrene-metbacrylic acid copolymer particles with alkali/cooling method. The influences of stirring position (in aqueous phase or at the interface of O/W) and stirr...Hollow particles were prepared by the treatment of styrene-metbacrylic acid copolymer particles with alkali/cooling method. The influences of stirring position (in aqueous phase or at the interface of O/W) and stirring speed (90, 110 and 240 r/min) on the formation of hollow particles were investigated. It is found that the soft stirring in aqueous phase at 90 r/min leads to the formation of monohollow particles, while the violent stirring at the interface of O/W and 240 r/min gives non-hollow products. In contrast, the weak stirring in aqueous phase at 110 r/min results in sterically heterogeneous dispersion of methacrylic acid-rich regions within the original particles, and hence the formation of multihollow particles. Further investigation indicates that the change of stirring efficiency provides a way to tune the diffusion behavior of monomer styrene, and therefore influences the distribution of methacrylic acid units in the original particles as well as the morphology of the treated particles.展开更多
基金the support for this work by National Natural Science Foundation of China(Grant Nos.22175139 and 22105156)。
文摘The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.
基金TheNaturalScienceFoundationofHunanProvince (No .98JJY2 0 6 0 )
文摘The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, conductivity, transmittance of polyaniline(PAN) latex and its powders were studied. The results show that the properties of PAN prepared through the emulsion polymerization are influenced by the amount of water used in the polymerization. The morphology of PAN varies with the water phase concentration used in the polymerization, which may result in the change of properties of PAN latex and its powders. When the volume fraction of water (φ) is about 20% 30%, the prepared PAN powder has higher conductivity, and the PAN latex has appropriate viscosity and particle size. The consumption of xylene was reduced at high φ value.
基金Project supported by China Scholarship CouncilProject(09JJ3100) supported by Hunan Provincial Natural Science Foundation of China
文摘Hollow particles were prepared by the treatment of styrene-metbacrylic acid copolymer particles with alkali/cooling method. The influences of stirring position (in aqueous phase or at the interface of O/W) and stirring speed (90, 110 and 240 r/min) on the formation of hollow particles were investigated. It is found that the soft stirring in aqueous phase at 90 r/min leads to the formation of monohollow particles, while the violent stirring at the interface of O/W and 240 r/min gives non-hollow products. In contrast, the weak stirring in aqueous phase at 110 r/min results in sterically heterogeneous dispersion of methacrylic acid-rich regions within the original particles, and hence the formation of multihollow particles. Further investigation indicates that the change of stirring efficiency provides a way to tune the diffusion behavior of monomer styrene, and therefore influences the distribution of methacrylic acid units in the original particles as well as the morphology of the treated particles.