In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-...The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.展开更多
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ...The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.展开更多
采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大...采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大幅度提高了锂离子电池的循环稳定性;将Si/void/C纳米结构嵌入在石墨烯层与层之间,利用石墨烯卓越的导电性和柔韧性,进一步缓冲了硅材料的体积效应和提高了复合材料的导电性能。该复合材料在4200 m A·h·g^(-1)(1 C)电流密度下循环1000次后比容量仍高达1603 m A·h·g^(-1);在67 A·g^(-1)(16 C)的高倍率下,比容量仍有310 m A·h·g^(-1),显示出了在锂离子电池负极材料领域的巨大应用潜力。展开更多
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m...Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing.展开更多
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
基金Project(11972204) supported by the National Natural Science Foundation of China。
文摘The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.
基金the University of Kashan.(Grant Number:467893/0655)。
文摘The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation.
文摘采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大幅度提高了锂离子电池的循环稳定性;将Si/void/C纳米结构嵌入在石墨烯层与层之间,利用石墨烯卓越的导电性和柔韧性,进一步缓冲了硅材料的体积效应和提高了复合材料的导电性能。该复合材料在4200 m A·h·g^(-1)(1 C)电流密度下循环1000次后比容量仍高达1603 m A·h·g^(-1);在67 A·g^(-1)(16 C)的高倍率下,比容量仍有310 m A·h·g^(-1),显示出了在锂离子电池负极材料领域的巨大应用潜力。
文摘Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing.