Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
Sound velocity, density, and viscosity values were measured at 303 K in four binary systems of benzene +1-, 2-, tert-, or iso-butanol. From these data, acoustical parameters, such as adiabatic compressibility, free le...Sound velocity, density, and viscosity values were measured at 303 K in four binary systems of benzene +1-, 2-, tert-, or iso-butanol. From these data, acoustical parameters, such as adiabatic compressibility, free length, free volume, and internal pressure were estimated using the standard relations. The results are interpreted in terms of molecular interaction between the components of the mixtures. Observed excess value in all the mixture indicates that the molecular symmetry existing in the system is highly disturbed by the nonpolar benzene molecules. Interaction energy terms of the statistical mixing are also verified for these binary systems and the dipole-dipole interactions are found to be predominantly present and are sharply affected by the isomeric forms of butanol.展开更多
The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and cen...The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry.展开更多
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
文摘Sound velocity, density, and viscosity values were measured at 303 K in four binary systems of benzene +1-, 2-, tert-, or iso-butanol. From these data, acoustical parameters, such as adiabatic compressibility, free length, free volume, and internal pressure were estimated using the standard relations. The results are interpreted in terms of molecular interaction between the components of the mixtures. Observed excess value in all the mixture indicates that the molecular symmetry existing in the system is highly disturbed by the nonpolar benzene molecules. Interaction energy terms of the statistical mixing are also verified for these binary systems and the dipole-dipole interactions are found to be predominantly present and are sharply affected by the isomeric forms of butanol.
基金National Natural Science Foundation of China(31700644)Shandong Province Postdoctoral Innovation Project(SDCX-ZG-202400195)。
文摘The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry.