期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
1
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
2
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
3
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:1
4
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型
5
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于STOA-VMD和改进TCN模型的水泵机组振动趋势预测
6
作者 王伟生 张宁 +5 位作者 邢磊 周保林 郭新帅 安东 高源 张孝远 《人民黄河》 北大核心 2025年第4期141-144,151,共5页
水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数... 水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数优化,实现振动信号的最优自适应分解,然后利用改进TCN对每个分解模态进行预测,最后叠加所有结果得到最终预测结果。以国内某雨水泵站水泵机组为例,基于水导轴承水平向摆度数据进行模型验证。结果表明:上述组合模型的预测值与监测值的变化趋势基本一致,其具有良好的预测能力。与STOA-VMD-TCN、VMD-EnTCN、VMD-TCN、TCN模型相比,所提出模型的E_(MA)、E_(RMS)、E_(MAP)最小,预测精度最高。 展开更多
关键词 时间卷积网络 乌燕鸥算法 变分模态分解 振动信号 趋势预测 水泵机组
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
7
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(LSTM) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
8
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
9
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
10
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于联合卷积变分自编码器和预测器的UWB定位算法
11
作者 古玉锋 李真 +1 位作者 高世椿 黎程山 《仪器仪表学报》 北大核心 2025年第1期182-192,共11页
某室内三线自动驾驶轨道交通系统使用了超宽带(UWB)定位系统,车辆的高精度定位是提高其运行可靠性和调度效率的关键技术。基于UWB定位精度的分析,提出了一种基于联合卷积变分自编码器和预测器(VAE-CNN)的非视距鉴别、测距误差补偿与神... 某室内三线自动驾驶轨道交通系统使用了超宽带(UWB)定位系统,车辆的高精度定位是提高其运行可靠性和调度效率的关键技术。基于UWB定位精度的分析,提出了一种基于联合卷积变分自编码器和预测器(VAE-CNN)的非视距鉴别、测距误差补偿与神经网络定位误差补偿的三步UWB定位算法。首先,采集标签与基站的测距误差和信道脉冲响应(CIR)数据,训练VAE-CNN模型,根据原始CIR和重建CIR的可信度阈值剔除非视距测距值。其次,根据预测器的预测误差补偿原始测距值,使用最小二乘法计算坐标和该坐标相对于各个基站坐标的方向余弦,训练神经网络用于拟合定位误差与方向余弦的关系。在已公开的包含视距和非视距的UWB测距值和CIR数据集上,验证了VAE-CNN模型的非视距鉴别能力,评估了基于VAE-CNN模型的非视距鉴别和测距误差补偿对定位精度的提升效果;在不同测距方差下,基于车辆模拟运行轨迹,评估了定位误差补偿神经网络提高定位精度的效果。搭建了UWB定位系统,验证了动态定位中三步UWB定位算法的实际效果。结果表明,动态定位中,在完全视距环境中,算法的平均定位误差为28.68 mm,均方根定位误差为16.67 mm,最大定位误差为76.68 mm;存在非视距的环境中,算法的平均定位误差为38.73 mm,均方根定位误差为20.61 mm,最大定位误差为116.47 mm。由此可知,所提出的三步UWB定位算法具有精度高、成本低和稳定性好的优点,能满足所涉及的室内轨道交通的定位需求。 展开更多
关键词 三线室内轨道交通 UWB定位 卷积变分自编码器 非视距鉴别 误差补偿
在线阅读 下载PDF
融合特征下的双流CNN的制动蠕动颤振评价 被引量:1
12
作者 李阳 靳畅 +1 位作者 李天舒 顾鼎元 《振动与冲击》 北大核心 2025年第1期134-142,189,共10页
针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方... 针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方法。一条支路的输入为经过变分模态分解提取的时间序列特征,另一条支路的输入为经过快速傅里叶变换提取的图像特征,将一维时序特征与高维图像特征融合,训练模型进行评分。该方法通过融合不同模态的信息,充分捕捉蠕动颤振的局部波形特征和空间纹理特征。结果表明,融合两种特征的评分模型的八分类准确率达87.13%,验证了特征融合方法在蠕动颤振评价上的有效性。 展开更多
关键词 卷积神经网络(CNN) 融合特征 变分模态分解(VMD) 蠕动颤振
在线阅读 下载PDF
基于变分自编码器的多源数据融合窃电检测方法 被引量:1
13
作者 蔡梓文 赵云 +3 位作者 陆煜锌 顾莲墙 陈康 高云鹏 《电力系统保护与控制》 北大核心 2025年第4期176-187,共12页
针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器... 针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器(variational autoencoder for multi-dimensional feature extraction,MF-VAE)来提取用户用电行为的多维度特征。然后,基于注意力时序卷积网络(attention temporal convolutional networks,ATCN)建立判别模型,再通过膨胀卷积和因果卷积获取多维度窃电行为特征的时序关系。同时,引入卷积注意力模块分配各维度特征的注意力权重,以提高模型的表现和泛化能力。最后采用Softmax分类器完成对多源数据中潜在窃电行为的准确识别。实验结果表明,用该方法提取的窃电行为特征更加丰富和多元化,能够有效降低窃电检测误检率并提高窃电行为判别准确率。 展开更多
关键词 窃电行为判别 多源数据融合 改进时域卷积网络 变分自编码器 注意力机制
在线阅读 下载PDF
柔性直流配电网中接地故障检测技术研究 被引量:1
14
作者 郑峰 吕佳雯 +1 位作者 林燕贞 梁宁 《电机与控制学报》 北大核心 2025年第4期54-64,共11页
针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方... 针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方法提取特征分量,利用特征模态分量构造识别判据,接着对采样数据进行CNN训练,获取模型最优参数,最后利用仿真平台搭建了一个基于模块化多电平变换器(MMC)的10 kV两端直流配电网结构来验证所提方法的有效性,仿真实验表明利用K-L散度优化变分模态分解对仿真数据进行处理,具有良好的推广能力,且具备对噪声的抗干扰能力,所提出的故障检测方法有效,对于各种故障类型的识别具有较强的灵敏性,能准确识别故障类型。 展开更多
关键词 柔性直流配电网 K-L散度优化 变分模态分解 卷积神经网络 故障检测 模块化多电平变换器
在线阅读 下载PDF
基于样本卷积交互网络的风电场集群短期功率预测
15
作者 朱国鹏 向玲 +3 位作者 范文振 吴俊 李跃文 胡爱军 《太阳能学报》 北大核心 2025年第1期158-167,共10页
为保障风电集群安全运行和优化区域电网调度,提出一种基于样本卷积交互网络(SCINet)的风电场集群短期功率预测方法。首先引入能量熵(EE)、变分模态分解(VMD)方法对功率序列进行处理,然后对平稳序列和非平稳序列分别使用SCINet、自回归... 为保障风电集群安全运行和优化区域电网调度,提出一种基于样本卷积交互网络(SCINet)的风电场集群短期功率预测方法。首先引入能量熵(EE)、变分模态分解(VMD)方法对功率序列进行处理,然后对平稳序列和非平稳序列分别使用SCINet、自回归滑动平均模型(ARMA)进行预测,最后将模型输出结果重构获得最终功率预测结果。算例1以中国东北某150MW大型风电场实测数据为例进行模型构建和预测分析,结果表明模型在功率序列特征挖掘方面具有明显优势,且预测精度较高。算例2以西北某298.5 MW风电场集群功率数据对所提方法进行验证,验证结果显示,该方法泛化性好,与目前风电场集群功率预测常用方法相比性能更好、计算效率更高,可为风电场集群功率预测提供参考。 展开更多
关键词 风功率 预测 风电场 信号处理 变分模态分解 卷积
在线阅读 下载PDF
基于VMD-CAE的无监督结构损伤识别研究
16
作者 王梦倩 康帅 +1 位作者 李传飞 董正方 《振动与冲击》 北大核心 2025年第11期309-320,共12页
为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对... 为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对振动信号进行分解,去除噪声和一些无关成分的影响,选取与结构自振特性相关的成分作为有效分量;然后通过叠加有效分量作为CAE模型的输入,进而重构信号,通过学习健康样本数据的特征,得到最大重构误差作为判断结构是否损坏的阈值。最后将该方法应用到IASC-ASCE SHM Benchmark结构试验数据和卡塔尔大学看台试验数据,并将结果与其他模型进行了对比,结果表明该方法在两个数据集上的识别结果都更加准确。即使当样本中含有噪声时,也能显著提高噪声样本的识别精度,具有较强的抗噪能力。 展开更多
关键词 深度学习 结构损伤识别 无监督 变分模态分解(VMD) 卷积自编码(CAE)
在线阅读 下载PDF
径流式水电站出力预测的学习模型研究
17
作者 李世林 王李东 +3 位作者 刘晓阳 马光文 黄炜斌 朱燕梅 《水利水电技术(中英文)》 北大核心 2025年第1期193-202,共10页
【目的】准确的径流式水电站出力预测对于拟定发电调度计划、电力保供策略至关重要。针对径流式水电站发电出力随机性强,直接预测精度低等特点,提出一种基于自适应变分模态分解和时间卷积网络(TCN)的组合预测模型。【方法】首先利用鲸... 【目的】准确的径流式水电站出力预测对于拟定发电调度计划、电力保供策略至关重要。针对径流式水电站发电出力随机性强,直接预测精度低等特点,提出一种基于自适应变分模态分解和时间卷积网络(TCN)的组合预测模型。【方法】首先利用鲸鱼群算法(WOA)对变分模态分解(VMD)的参数进行优选,实现原始出力序列的最优自适应分解,然后对分解后的每个分量分别建立TCN模型进行趋势预测,最后将所得结果重构得到最终预测结果。【结果】结果显示:与其他模型相比,所提模型在相同条件下预测效果更优。在非汛期,所提模型决定系数R^(2)为97.08%、平均相对误差MRE为3.68%、均方根误差RMSE为10.05 MW;在汛期,所提模型决定系数R^(2)为93.71%、平均相对误差MRE为8.09%、均方根误差RMSE为32.96 MW。【结论】结果表明:(1)WOA-VMD方法能够有效地提取径流式水电站出力序列的特征,降低自身数据的不稳定性对预测结果造成的影响;(2)相比于VMD-TCN、TCN、LSTM、RNN、BP五种模型,所提出的WOA-VMD-TCN预测模型能有效提升水电站出力预测精度,为径流式水电站短期出力预测提供了一种新的、有效的建模思路。 展开更多
关键词 径流式水电站 功率预测 鲸鱼群算法 变分模态分解 时间卷积网络 影响因素
在线阅读 下载PDF
基于时空特征提取的刀具无监督异常检测方法
18
作者 邵绪凤 赵志诚 +1 位作者 聂晓音 张宇 《计算机集成制造系统》 北大核心 2025年第3期877-887,共11页
刀具异常检测是分析和判断刀具健康状态的基础和关键。针对刀具在异常检测过程中,振动信号状态信息难以辨别、时空特征提取不同步以及潜在空间中潜在变量的分布考虑尚不充分,导致模型检测精度低的问题,提出一种基于时空特征提取的刀具... 刀具异常检测是分析和判断刀具健康状态的基础和关键。针对刀具在异常检测过程中,振动信号状态信息难以辨别、时空特征提取不同步以及潜在空间中潜在变量的分布考虑尚不充分,导致模型检测精度低的问题,提出一种基于时空特征提取的刀具无监督异常检测方法。首先,对各轴向振动信号采用独立式预处理方法,将其映射到同一范围,消除信号波动范围不一致带来的影响。然后,将时间卷积网络(TCN)嵌入变分自编码器(VAE)中,实现数据时空特征的同步提取,提高模型的学习能力;同时,通过非线性映射将原始数据映射到潜在空间,从而学习到各轴向输入的潜在变量,并使其尽可能对齐高斯分布。最后,利用公开刀具磨损数据集PHM 2010验证了所提方法的有效性,结果表明,所提方法具有较高的检测精度,且性能优于其他异常检测方法。 展开更多
关键词 刀具 异常检测 变分自码器 时间卷积网络 无监督学习
在线阅读 下载PDF
基于VAE与API行为特征抽取的恶意软件检测
19
作者 于孟洋 师智斌 +1 位作者 郝伟泽 张舒娟 《计算机工程与设计》 北大核心 2025年第2期464-471,共8页
针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基... 针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基于变分自编码器架构,学习数据的潜在状态表示,完成对恶意软件全局特征和模式的提取;采用多层卷积神经网络,抽取不同粒度调用子序列的行为语义特征,同时统计调用频率,获取API使用权重信息;综合上述特征进行恶意软件检测。实验结果表明,该方法在阿里云数据集上达到了97.81%的良/恶性检测精度和93.74%的多分类精度,验证了方法的有效性。 展开更多
关键词 恶意软件检测 变分自编码器 多层卷积神经网络 序列信息 行为语义 频率信息 特征融合
在线阅读 下载PDF
基于改进卷积神经网络的新能源并网短路电流预测技术
20
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部