期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Fault detection in flotation processes based on deep learning and support vector machine 被引量:18
1
作者 LI Zhong-mei GUI Wei-hua ZHU Jian-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2504-2515,共12页
Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have... Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China. 展开更多
关键词 flotation processes convolutional neural network support vector machine froth images fault detection
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
2
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于MS1DCNN-BOA-SVM的智能液压系统故障诊断方法
3
作者 闫锋 肖成军 +2 位作者 孙一伟 孙有朝 谭忠睿 《机床与液压》 北大核心 2025年第8期174-181,共8页
针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构... 针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构建特征向量;然后,利用贝叶斯搜索优化SVM进行分类识别,构建故障诊断模型;最后,对模型进行训练。结果表明:该模型对柱塞泵和蓄能器的故障诊断准确率分别为99.63%、99.17%;与MS1DCNN、1DCNN、SVM模型相比,该模型在液压系统故障诊断方面具有高准确率、高可靠性和强泛化能力的优势。 展开更多
关键词 液压系统 多尺度卷积神经网络 支持向量机 贝叶斯搜索优化 故障诊断
在线阅读 下载PDF
基于CNN-BiLSTM双通道特征融合的PEMFC水淹故障识别方法 被引量:3
4
作者 赵旭阳 袁裕鹏 +2 位作者 童亮 朱小芳 李骁 《太阳能学报》 北大核心 2025年第4期30-38,共9页
为及时准确地识别质子交换膜燃料电池(PEMFC)水淹故障,提出基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)双通道特征融合的PEMFC水淹故障识别方法。首先,采用归一化消除原始特征之间的量纲;在此基础上利用随机森林(RF)评估数据的... 为及时准确地识别质子交换膜燃料电池(PEMFC)水淹故障,提出基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)双通道特征融合的PEMFC水淹故障识别方法。首先,采用归一化消除原始特征之间的量纲;在此基础上利用随机森林(RF)评估数据的特征重要性进行特征筛选;采用并联式结构将CNN与BiLSTM结合分别提取空间特征和时间特征并进行串联融合;最后利用支持向量机(SVM)进行水淹故障识别。实例分析表明,所提方法可快速准确地识别PEMFC的正常状态和水淹故障,总体分类准确率为99.08%,测试用时为0.0929 s,可有效提高故障分类的准确率。 展开更多
关键词 质子交换膜燃料电池 故障诊断 卷积神经网络 长短时记忆网络 随机森林 支持向量机
在线阅读 下载PDF
基于CNN-SVM的变压器故障诊断方法 被引量:2
5
作者 李州 汪繁荣 《现代电子技术》 北大核心 2025年第6期73-77,共5页
针对变压器故障诊断存在的精度低、鲁棒性不强等问题,提出一种基于卷积神经网络(CNN)和支持向量机(SVM)的故障诊断方法。首先,基于油中溶解气体分析(DGA)法,以5种特征量作为输入,利用CNN提取数据的特征信息;然后导入SVM中进行分类,实现... 针对变压器故障诊断存在的精度低、鲁棒性不强等问题,提出一种基于卷积神经网络(CNN)和支持向量机(SVM)的故障诊断方法。首先,基于油中溶解气体分析(DGA)法,以5种特征量作为输入,利用CNN提取数据的特征信息;然后导入SVM中进行分类,实现变压器的故障诊断。基于336组油气数据对所提模型的性能进行验证,并将其与其他方法进行对比。实验结果表明:所构建的CNN-SVM诊断模型与CNN-BiLSTM网络、LSTM网络和CNN相比,综合故障诊断精度分别提高了8.9%、12.5%和19.6%,并且CNN-SVM模型有着更快的运行速度,运行时间约为3.11 s;当修改输入数据或减少输入的气体特征量时,CNN-SVM模型的诊断精度相比于其他方法下降最少,说明CNN-SVM模型具有更好的鲁棒性和特征提取能力。 展开更多
关键词 变压器 故障诊断 卷积神经网络 支持向量机 特征提取 诊断精度
在线阅读 下载PDF
基于卷积神经网络与支持向量机的适配器落点预测方法 被引量:1
6
作者 苏政宇 杨宝生 +3 位作者 杨婧 唐静楠 姜毅 邓月光 《兵工学报》 北大核心 2025年第2期91-102,共12页
针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程... 针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程适配器动力学运动模型,并通过四阶龙格库塔法对适配器运动轨迹进行数值求解,获得大量的适配器运动状态参数和落点信息;提出CNN-SVM的适配器落点预测模型,采用Adam优化器优化CNN网络性能,并通过网格搜索法获得SVM最佳的超参数。研究结果表明:CNN-SVM模型对适配器落点预测具有较好的求解精度和较强的泛化性能,其训练集和测试集的R 2值均大于0.99,同时该模型的平均绝对误差均小于0.1 m;在相同的计算资源且满足任务预测精度的条件下,其求解时间仅为传统数值积分方法的8.5%。该模型在实际应用中具备显著的优势,为发射过程中适配器分离落点快速预测提供了一种有效的解决方案。 展开更多
关键词 落点预测 适配器 卷积神经网络 支持向量机
在线阅读 下载PDF
基于1D-CNN-SVM的下肢外骨骼步态信息识别研究
7
作者 崔占贺 艾莉莎 +2 位作者 马欣雨 田天齐 王松 《电子测量技术》 北大核心 2025年第12期71-78,共8页
下肢外骨骼的步态识别是实现人机协同控制的关键技术,然而现有步态识别方法在处理一维时序数据时面临局部特征提取效率不足、小样本泛化能力弱以及模型计算开销大等挑战。针对上述问题,本文提出一种基于1D-CNN-SVM的混合模型,通过一维... 下肢外骨骼的步态识别是实现人机协同控制的关键技术,然而现有步态识别方法在处理一维时序数据时面临局部特征提取效率不足、小样本泛化能力弱以及模型计算开销大等挑战。针对上述问题,本文提出一种基于1D-CNN-SVM的混合模型,通过一维卷积神经网络(1D-CNN)自动提取一维时序数据的局部特征,并利用支持向量机(SVM)在小样本条件下实现高鲁棒性分类。实验结果表明,该模型在自定义步态数据集上的总识别率达到99.00%,相较传统SVM模型和单一1D-CNN模型分别提升5.67%和7.99%。另外该模型参数量仅为26156,单样本推理时间低至0.06 ms,显著优于1D-CNN-LSTM混合模型。本研究为下肢外骨骼的步态识别提供了一种在小样本条件下依然兼具泛化能力、识别能力与轻量化的解决方案。 展开更多
关键词 下肢外骨骼 步态识别 支持向量机 一维卷积神经网络
在线阅读 下载PDF
基于CNN-SVM的行人活动识别方法 被引量:2
8
作者 张帅 李召洋 +1 位作者 陈建广 黄风华 《导航定位学报》 北大核心 2025年第1期87-93,共7页
针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层... 针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层相结合的网络中进行训练直至网络收敛,收敛的CNN网络用于自动提取行人活动数据特征;然后利用支持向量机(SVM)取代CNN网络的归一化指数函数(Softmax)层来优化分类效果。实验结果表明,所提出的CNN-SVM模型可达到97.77%的识别准确率,优于对比实验模型,具有较好的行人活动识别效果。 展开更多
关键词 行人活动识别 卷积神经网络(CNN) 支持向量机(SVM) 惯性传感器 深度学习
在线阅读 下载PDF
基于改进CNN-SVM和机器视觉的苹果自动分级方法研究
9
作者 张瑞琪 杨宁 张一枫 《食品与机械》 北大核心 2025年第9期75-81,共7页
[目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参... [目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参数量。通过批量归一化技术提高模型的泛化能力。通过支持向量机替换卷积神经网络的Softmax分类器,提高分类的准确性,并进行验证实验。[结果]与常规的苹果分级方法相比,试验方法在苹果自动分级中具有更高的检测准确和效率,分级准确率达到98.50%,分级速度达到209帧/s,满足食品加工自动化要求。[结论]通过优化现有苹果自动分级方法,在一定程度上提高了检测性能。 展开更多
关键词 苹果 自动分级 卷积神经网络 支持向量机 全局平均池化 批量归一化
在线阅读 下载PDF
融合深度空间特征的TSVM自动遥感变化检测方法
10
作者 谢志伟 李文刚 +1 位作者 孙立双 苏国庆 《遥感信息》 北大核心 2025年第1期10-18,共9页
为了解决直推式支持向量机(transductive support vector machines,TSVM)在样本选择自动化程度低和特征学习充分性不足的问题,提出了一种融合深度空间特征与传统影像对象特征的TSVM自动高分遥感影像变化检测方法。首先,采用基于分形网... 为了解决直推式支持向量机(transductive support vector machines,TSVM)在样本选择自动化程度低和特征学习充分性不足的问题,提出了一种融合深度空间特征与传统影像对象特征的TSVM自动高分遥感影像变化检测方法。首先,采用基于分形网络演化算法的叠置分割获取多时相高分遥感影像的影像对象,通过卷积神经网络提取遥感影像的深度空间特征,并与灰度、指数和纹理等传统影像对象特征联合构建特征空间;然后,利用卡方变换计算多维特征的加权特征差异度,采用最大期望算法和贝叶斯最小错误判别规则得到二值分割结果,依据变化概率自动将分割结果中准确率较高的部分标记为训练样本;最后,采用标记训练样本获得TSVM的多维特征空间二值分割超平面,进而完成自动变化检测。选择武汉市的两组高分数据集作为实验数据。实验结果表明,该方法能够实现样本自动选择,并且通过融合深度空间特征可以有效提高特征学习的充分性,平均准确率达到了88.84%,平均漏检率较仅利用传统影像对象特征的TSVM法降低了3.29个百分点,在定性和定量的变化检测有效性评价中均得到了提高。 展开更多
关键词 叠置分割 样本自动选择 直推式支持向量机 变化检测 卷积神经网络
在线阅读 下载PDF
基于DCNN-SVM的农田灌溉分流机械智能控制方法
11
作者 张亮 冯乃勤 孙滨 《节水灌溉》 北大核心 2025年第7期53-58,65,共7页
当前农田灌溉分流以简单的单一阈值干旱判断配合机械开关人工或者定时控制为主,无法按照土壤干旱特征分类后再进行灌溉控制。为此,提出基于DCNN-SVM的农田灌溉分流机械智能控制方法。采用水分传感器实时采集农田灌溉区域的土壤水分数据... 当前农田灌溉分流以简单的单一阈值干旱判断配合机械开关人工或者定时控制为主,无法按照土壤干旱特征分类后再进行灌溉控制。为此,提出基于DCNN-SVM的农田灌溉分流机械智能控制方法。采用水分传感器实时采集农田灌溉区域的土壤水分数据,构建DCNN-SVM模型,利用DCNN提取土壤水分数据特征并输入到SVM中对土壤水分状态分类。根据SVM分类器的输出结果,确定相应的灌溉控制策略。将控制策略转化为具体的控制信号,输入到分流机械阀门控制器中,自动调节阀门开度,实现灌溉水量的精准控制。实验表明:该方法能够准确地采集并分析农田灌溉区域的土壤水分数据,成功识别出土壤水分的不同类别,可精准控制农田灌溉分流机械阀门的开度,误差不超过5%,分流控制后的灌溉量为52~70 L,灌溉量更低,可以达到节水的效果。 展开更多
关键词 深度卷积神经网络 支持向量机 灌溉分流机械 阀门开度 智能控制 控制器
在线阅读 下载PDF
基于FDS的商业建筑火灾温度场预测
12
作者 曹妍曦 马鸿雁 王顺 《中国安全科学学报》 北大核心 2025年第8期213-218,共6页
为解决现代商业建筑火灾环境复杂、温度场预测难的问题,利用卷积神经网络(CNN)结合支持向量机(SVM)构建火灾温度场预测模型。先采用火灾动力学模拟(FDS)搭建商业建筑火灾模型,获得温度测点接收的序列数据,将温度、位置坐标和火灾持续时... 为解决现代商业建筑火灾环境复杂、温度场预测难的问题,利用卷积神经网络(CNN)结合支持向量机(SVM)构建火灾温度场预测模型。先采用火灾动力学模拟(FDS)搭建商业建筑火灾模型,获得温度测点接收的序列数据,将温度、位置坐标和火灾持续时间作为输入参数建立数据集;再引入霜冰优化算法(RIME)对CNN-SVM中的隐藏层节点数、正则化系数和学习率进行寻优,建立预测模型,并讨论模型在不同的传感器损坏率下的抗干扰能力。结果表明:该模型在温度场平面预测上表现最优,平均绝对百分比误差为5.6%,最大相对温度误差不超过25%。在3种工况下抗干扰性能最佳,极端条件下最大误差不超过15%。 展开更多
关键词 商业建筑火灾 温度场 火灾动力学模拟(FDS) 卷积神经网络(CNN) 支持向量机(SVM)
在线阅读 下载PDF
基于改进PKCNN的电网基建档案绿色数字化管理预警方法
13
作者 陈然 周蠡 +5 位作者 蔡杰 贺兰菲 郑希 何峰 许小薇 王振 《高压电器》 北大核心 2025年第5期93-102,共10页
在电网建设过程中,电网基建档案是重要的过程资料,但其数量和类型繁杂,这给档案绿色数字化管理及预警带来巨大挑战。针对这一挑战,文中提出一种基于改进融合先验知识卷积神经网络(PKCNN)的电网基建档案电子化管理预警方法。首先,利用PK... 在电网建设过程中,电网基建档案是重要的过程资料,但其数量和类型繁杂,这给档案绿色数字化管理及预警带来巨大挑战。针对这一挑战,文中提出一种基于改进融合先验知识卷积神经网络(PKCNN)的电网基建档案电子化管理预警方法。首先,利用PKCNN卷积层对输入的电网基建档案进行特征提取,并引入先验知识辅助网络参数训练;然后,采用基于萤火虫算法(FA)优化的非线性SVM对PKCNN中分类函数进行改进,以提高电网基建档案电子化管理预警的精度;最后,建立基于改进PKCNN模型的电网基建档案电子化管理预警方法进行仿真验证。结果表明,PKCNN网络比传统CNN具有更强的特征学习能力和更快的收敛速度,利用SVM改进PKCNN中分类函数能明显提升PKCNN识别精度。相较于基于传统CNN和CNN-SVM模型的预警方法,文中所提方法在电网基建档案质量的管理识别和预警方面准确率更高、泛化性更强。 展开更多
关键词 先验知识 卷积神经网络 支持向量机 电网基建档案 管理预警
在线阅读 下载PDF
基于1DCNN-IWOA-SVM的齿轮箱故障诊断方法研究
14
作者 贾丽臻 雷欣然 李耀华 《机械设计》 北大核心 2025年第7期98-106,共9页
齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,... 齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,实现航空发动机齿轮箱故障快速、精准诊断。使用一维卷积神经通过其内置的卷积和池化对振动信号进行故障特征提取,在鲸鱼优化算法中引入混沌映射、非线性因子和自适应权重对其进行改进;使用改进后的鲸鱼优化算法对支持向量机进行参数寻优,再将一维卷积神经网络提取的故障特征输入到经改进鲸鱼优化参数后的支持向量机中进行故障诊断。仿真结果表明:所提的故障诊断模型对齿轮箱故障具有良好的诊断效果,与其他方法相比效果更好、泛化能力更强。 展开更多
关键词 齿轮箱 故障诊断 一维卷积神经网络 改进鲸鱼优化算法 支持向量机
在线阅读 下载PDF
基于轴箱垂向振动加速度的地铁车轮失圆状态诊断方法 被引量:5
15
作者 梁红琴 姜进南 +5 位作者 陶功权 刘奇锋 卢纯 温泽峰 张楷 肖乾 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期431-443,共13页
首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形... 首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形磨耗幅值之间的映射关系;最后,通过智能优化算法逆向求解幅值,对比不同代理模型和智能优化算法在多边形磨耗幅值识别上的适用性。研究结果表明:1DCNN-SVM模型在正常、低阶多边形、高阶多边形、随机非圆车轮4类典型的车轮不圆度状态分类识别中取得99.82%的准确性,相比另外3种分类方法,其泛化性能和强化学习能力都具有明显的优势。在车轮多边形磨耗幅值识别方面,基于克里金模型(KSM)和粒子群算法(PSO)的波深识别模型具有更好的预测稳定性和时效性。 展开更多
关键词 车轮多边形磨耗 卷积神经网络 支持向量机 代理模型 智能优化算法
在线阅读 下载PDF
基于CNN-SVM模型的鸡蛋外观品质检测 被引量:3
16
作者 齐歌 赵峰 李婉宁 《食品与机械》 CSCD 北大核心 2024年第8期113-119,156,共8页
[目的]提高鸡蛋外观品质检测的精度,建立CNN-SVM模型的鸡蛋外观品质检测模型。[方法]结合CNN的自适应特征提取功能和SVM的超强泛化分类性能,通过6层卷积神经网络结构处理提取全连接层的特征,采用CNN-SVM混合模型替代传统CNN+softmax,构... [目的]提高鸡蛋外观品质检测的精度,建立CNN-SVM模型的鸡蛋外观品质检测模型。[方法]结合CNN的自适应特征提取功能和SVM的超强泛化分类性能,通过6层卷积神经网络结构处理提取全连接层的特征,采用CNN-SVM混合模型替代传统CNN+softmax,构建一个基于CNN-SVM模型的鸡蛋外观品质检测方法。[结果]与SVM模型、CNN模型和KNN模型相比,CNN-SVM模型在准确率、精确率、召回率和F1分数方面表现优异,分别为97.97%,98.10%,98.10%,98.00%。KNN模型在鸡蛋外观品质检测上的精度最低,其准确率、精确率、召回率和F1分数分别为77.46%,79.44%,76.75%,76.90%。[结论]CNN-SVM模型具有很强的鲁棒性和抗噪声能力,可以有效提高鸡蛋外观品质检测的准确性和适用性。 展开更多
关键词 卷积神经网络 支持向量机 鸡蛋外观 全连接层
在线阅读 下载PDF
基于改进CNN-SVM的动力电池组故障诊断研究 被引量:2
17
作者 廖力 马明东 +1 位作者 常春 姜久春 《电源技术》 CAS 北大核心 2024年第7期1273-1280,共8页
针对卷积神经网络(CNN)在动力电池组故障诊断中容易过拟合和准确度低的问题,提出了一种改进的基于卷积神经网络的锂离子电池故障诊断模型。首先,对CNN网络的结构和参数进行调整和优化,利用小波包变换将故障信息提取到CNN中,然后用支持... 针对卷积神经网络(CNN)在动力电池组故障诊断中容易过拟合和准确度低的问题,提出了一种改进的基于卷积神经网络的锂离子电池故障诊断模型。首先,对CNN网络的结构和参数进行调整和优化,利用小波包变换将故障信息提取到CNN中,然后用支持向量机(SVM)代替CNN中的SoftMax分类器构建CNN-SVM模型,再利用粒子群算法(PSO)对SVM中的超参数进行优化,以得到用于电池组故障诊断的最优模型,最后,通过故障实验对比来验证所提出方法的优越性。实验结果表明,CNN-SVM模型的故障分类准确率可达97%以上,远高于传统深度学习网络,对锂离子电池组的故障诊断具有实际意义。 展开更多
关键词 锂离子电池组 故障诊断 卷积神经网络 支持向量机 PSO
在线阅读 下载PDF
基于改进CNN-SVM的井下钻头磨损状态评估研究 被引量:3
18
作者 李玉梅 邓杨林 +3 位作者 李基伟 李乾 杨磊 于丽维 《石油机械》 北大核心 2024年第6期12-19,共8页
现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采... 现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采集的近钻头原始振动数据导入CNN-Softmax模型,通过训练好的CNN模型从近钻头数据中提取主要的特征参数,将提取的稀疏特征向量输入SVM并进行故障分类,利用遗传算法实现SVM参数的优化选择,最后应用t分布随机邻域法近邻嵌入,使其故障特征学习过程可视化,以评估其特征提取能力。采用该算法对钻头磨损的现场试验数据进行了分析。分析结果表明:基于改进CNN-SVM的井下钻头磨损状态评估算法准确率高达98.33%。所得结论可为实现钻头磨损状态的进一步监测提供理论支撑。 展开更多
关键词 钻头磨损状态评估 卷积神经网络 支持向量机 特征提取可视化 平均池化采样
在线阅读 下载PDF
基于CBAM-CGRU-SVM的Android恶意软件检测方法 被引量:6
19
作者 孙敏 成倩 丁希宁 《计算机应用》 CSCD 北大核心 2024年第5期1539-1545,共7页
随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CG... 随着Android恶意软件的种类和数量不断增多,检测恶意软件以保护系统安全和用户隐私变得越来越重要。针对传统的恶意软件检测模型分类准确率较低的问题,提出一种基于卷积神经网络(CNN)、门控循环单元(GRU)和支持向量机(SVM)的模型CBAM-CGRU-SVM。首先,在CNN中添加卷积块注意力模块(CBAM)以学习更多恶意软件的关键特征;其次,利用GRU进一步提取特征;最后,为了解决图像分类时模型泛化能力不足的问题,使用SVM代替softmax激活函数作为模型的分类函数。实验使用了Malimg公开数据集,该数据集将恶意软件数据图像化作为模型输入。实验结果表明,CBAM-CGRU-SVM模型分类准确率达到94.73%,能够更有效地对恶意软件家族进行分类。 展开更多
关键词 恶意软件 卷积神经网络 卷积块注意力模块 门控循环单元 支持向量机
在线阅读 下载PDF
基于改进SKNet-SVM的网络安全态势评估 被引量:10
20
作者 赵冬梅 孙明伟 +1 位作者 宿梦月 吴亚星 《应用科学学报》 CAS CSCD 北大核心 2024年第2期334-349,共16页
为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,... 为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,增强特征之间关联性。然后,将提取的特征输入到支持向量机中进行分类,并使用网格优化算法对支持向量机中的参数进行全局寻优。最后,根据网络攻击影响指标计算网络安全态势值。实验表明,基于改进选择性卷积核卷积神经网络和支持向量机的态势评估模型与传统的卷积神经网络搭建的态势评估模型相比,准确率更高,并且具有更强的稳定性和鲁棒性。 展开更多
关键词 网络安全态势评估 网络安全态势感知 改进选择性卷积核卷积神经网络 支持向量机 网格优化算法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部