期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
1
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network long short-term memory network
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm convolutional Neural Network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于ConvLSTM的移动边缘计算服务器能耗模型
3
作者 李小龙 李曦 +1 位作者 杨凌峰 黄华 《应用科学学报》 CAS CSCD 北大核心 2024年第1期53-66,共14页
针对现有能耗模型对动态工作负载波动具有低敏感性和低精度的问题,该文基于卷积长短期记忆(convolutional long short-term memory, ConvLSTM)神经网络,提出了用于移动边缘计算的服务器智能能耗模型(intelligence server energy consump... 针对现有能耗模型对动态工作负载波动具有低敏感性和低精度的问题,该文基于卷积长短期记忆(convolutional long short-term memory, ConvLSTM)神经网络,提出了用于移动边缘计算的服务器智能能耗模型(intelligence server energy consumption model,IECM),用于预测和优化服务器的能量消耗。通过收集服务器运行时间参数,使用熵值法筛选和保留显著影响服务器能耗的参数。基于选定的参数,利用ConvLSTM神经网络训练服务器能耗模型的深度网络。与现有的能耗模型相比,IECM在CPU密集型、I/O密集型、内存密集型和混合型任务上,能够适应服务器工作负载的动态变化,并在能耗预测上具有更好的准确性。 展开更多
关键词 卷积长短期记忆 能耗预测 智能功率模型 功率建模
在线阅读 下载PDF
基于Informer算法的病毒传播预测研究 被引量:1
4
作者 常万杰 刘琳琳 +2 位作者 曹宇 曹杨 魏海平 《辽宁石油化工大学学报》 CAS 2024年第1期80-88,共9页
新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一... 新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一种基于Transformer模型的Informer模型,并将注意力机制和蒸馏机制应用到疫情数据的时序预测中。以门限自回归(Threshold AutoRegressive, TAR)模型和多种主流的循环神经类时序预测模型作为对比模型,通过仿真实验,对中国、美国和英国的疫情数据当前尚存感染人数进行短期预测,并以均方根误差(RMSE)和平均绝对误差(MAE)为评价指标,选择最佳模型进行了中长期的预测。结果表明,无论是RMSE还是MAE,Informer模型的指标值都是最优的,表明Informer模型对中国、美国和英国疫情的预测精度比其他对比模型高。最后,使用Informer模型对中国、美国和英国的疫情发展进行了中长期预测。 展开更多
关键词 新冠肺炎病毒疫情 门限自回归 长短期记忆网络 卷积记忆网络 门控循环单元网络 时序卷积网络 Informer算法
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
5
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(LSTM) Layer counting Multi-source fusion
在线阅读 下载PDF
Chinese named entity recognition with multi-network fusion of multi-scale lexical information
6
作者 Yan Guo Hong-Chen Liu +3 位作者 Fu-Jiang Liu Wei-Hua Lin Quan-Sen Shao Jun-Shun Su 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期53-80,共28页
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ... Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision. 展开更多
关键词 Bi-directional long short-term memory(BiLSTM) Chinese named entity recognition(CNER) Iterated dilated convolutional neural network(IDCNN) Multi-network integration Multi-scale lexical features
在线阅读 下载PDF
GCN-LSTM spatiotemporal-network-based method for post-disturbance frequency prediction of power systems 被引量:4
7
作者 Dengyi Huang Hao Liu +1 位作者 Tianshu Bi Qixun Yang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期96-107,共12页
Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly importa... Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems. 展开更多
关键词 Synchronous phasor measurement Frequency-response prediction Spatiotemporal distribution characteristics Improved graph convolutional network long short-term memory network Spatiotemporal-network structure
在线阅读 下载PDF
A method for correcting characteristic X-ray net peak count from drifted shadow peak 被引量:2
8
作者 Lin Tang Xing‑Ke Ma +2 位作者 Kai‑Bo Shi Yeng‑Chai Soh Hong‑Tao Shen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期155-167,共13页
To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters o... To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters of a nuclear pulse signal by learning of samples.A predefined mathematical model was used to train the CNN-LSTM model and generate a dataset composed of distorted pulse sequences.The trained model was validated using simulated pulses.The relative errors in the amplitude estimation of pulse sequences with different degrees of distortion were obtained using triangular shaping,CNN-LSTM,and LSTM models.As a result,for severely distorted pulses,the relative error of the CNN-LSTM model in estimating the pulse parameters was reduced by 14.35%compared with that of the triangular shaping algorithm.For slightly distorted pulses,the relative error of the CNN-LSTM model was reduced by 0.33%compared with that of the triangular shaping algorithm.The model was then evaluated considering two performance indicators,the correction ratio and the efficiency ratio,which represent the proportion of the increase in peak area of the two characteristic peak regions of interest(ROIs)to the peak area of the corrected characteristic peak ROI and the proportion of the increase in peak area of the two characteristic peak ROIs to the peak areas of the two shadow peak ROI,respectively.Ten measurement results of the iron ore samples indicate that approximately 86.27%of the decreased peak area of the shadow peak ROI was corrected to the characteristic peak ROI,and the proportion of the corrected peak area to the peak area of the characteristic peak ROI was approximately 1.72%.The proposed CNN-LSTM model can be applied to X-ray energy spectrum correction,which is of great significance for X-ray spectroscopy and elemental content analyses. 展开更多
关键词 Peak correction Triangular shaping Deep learning long short-term memory convolutional neural network X-ray fluorescence spectroscopy Silicon drift detector
在线阅读 下载PDF
Video Description with Integrated Visual and Textual Information 被引量:1
9
作者 Yue Wang Jinlai Liu Xiaojie Wang 《China Communications》 SCIE CSCD 2019年第1期119-128,共10页
Video Description aims to automatically generate descriptive natural language for videos.Due to the large volume of multi-modal data and successful implementations of Deep Neural Networks(DNNs),a wide range of models ... Video Description aims to automatically generate descriptive natural language for videos.Due to the large volume of multi-modal data and successful implementations of Deep Neural Networks(DNNs),a wide range of models have been proposed.However,previous models learn insufficient linguistic information or correlation between visual and textual modalities.In order to address those problems,this paper proposes an integrated model using Long Short-Term Memory(LSTM).This proposed model consists of triple channels in parallel:a primary video description channel,a sentence-to-sentence channel for language learning,and a channel to integrate visual and textual information.Additionally,the parallel three channels are connected by LSTM weight matrices during training.The VD-ivt model is evaluated on two publicly available datasets,i.e.Youtube2 Text and LSMDC.Experimental results demonstrate that the performance of the proposed model outperforms those benchmarks. 展开更多
关键词 VIDEO description(VD) deep NEURAL network(DNN) convolutional NEURAL network(CNN) long short-term memory(LSTM)
在线阅读 下载PDF
Recognition of mortar pumpability via computer vision and deep learning
10
作者 Hao-Zhe Feng Hong-Yang Yu +2 位作者 Wen-Yong Wang Wen-Xuan Wang Ming-Qian Du 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第3期73-81,共9页
The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional con... The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification. 展开更多
关键词 Classification Computer vision Deep learning PUMPABILITY 2-dimensional convolutional long short-term memory network (convlstm2D) 3-dimensional convolutional neural network(3D CNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部