期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
锂离子电池健康状态的DCAE-Transformer预测方法研究 被引量:2
1
作者 李浩平 于波涛 +3 位作者 孟荣华 金朱鸿 杜昕毅 李景瑞 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期106-112,共7页
提出了一种基于Transformer的DCAE-Transformer模型,旨在改善健康状态(SOH)估计的准确性.该方法通过Pearson相关系数筛选关键特征,利用去噪自编码器(DAE)和卷积神经网络(CNN)相结合进行数据预处理和特征提取,再将数据输入Transformer框... 提出了一种基于Transformer的DCAE-Transformer模型,旨在改善健康状态(SOH)估计的准确性.该方法通过Pearson相关系数筛选关键特征,利用去噪自编码器(DAE)和卷积神经网络(CNN)相结合进行数据预处理和特征提取,再将数据输入Transformer框架完成预测.使用NASA和CALCE提供的数据集进行验证,DCAE-Transformer模型在NASA电池样本上的误差指标(EMA、EMAP和ERMS)均低于1%,R2值超过99.5%;在CALCE样本上,误差指标低于5%,R2值超过98%.结果表明,该模型在锂电池SOH估计方面具有较高的精确性和泛化性. 展开更多
关键词 锂电池 健康状态估计 卷积去噪自编码器 TRANSFORMER 预测性能
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:2
2
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
3
作者 许涛 南新元 +1 位作者 蔡鑫 赵濮 《南京信息工程大学学报》 北大核心 2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,... 在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案. 展开更多
关键词 去噪自编码器 动量编码器 动态队列 信息噪声对比估计 时间卷积网络 TRANSFORMER
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
4
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
强噪声工况下滚动轴承的CDAE-ResBiLSTM故障诊断方法
5
作者 马新娜 李沂阳 +3 位作者 梁秀 刘勤清 汤宇 郑雪鹏 《郑州大学学报(理学版)》 北大核心 2025年第5期69-77,共9页
滚动轴承运行的强噪声环境为数据特征的提取带来难度。针对强噪声工况下的滚动轴承故障诊断的问题,使用残差网络、半软阈值函数、APReLU激活函数和SENet注意力机制构建改进的残差收缩单元(IRSBU),提出了一种卷积降噪自编码器(CDAE)与改... 滚动轴承运行的强噪声环境为数据特征的提取带来难度。针对强噪声工况下的滚动轴承故障诊断的问题,使用残差网络、半软阈值函数、APReLU激活函数和SENet注意力机制构建改进的残差收缩单元(IRSBU),提出了一种卷积降噪自编码器(CDAE)与改进的残差收缩双向长短期记忆网络(ResBiLSTM)相结合的滚动轴承故障诊断方法。首先,对一维原始信号加入高斯噪声来模仿强噪声工况,将加噪数据集输入CDAE中进行特征提取;其次,将编码器编码后隐含层的低维降噪特征输入ResBiLSTM中进行故障诊断;最后,采用凯斯西储大学轴承数据集(CWRU)以及西安交通大学轴承数据集(XJTU-SY)对所提方法进行实验验证。实验结果表明,CDAE-ResBiLSTM模型具有良好的特征提取能力以及抗噪性。 展开更多
关键词 滚动轴承 故障诊断 强噪声工况 卷积降噪自编码器 双向长短期记忆网络 残差收缩单元
在线阅读 下载PDF
基于DAE-BiLSTM-CNN的滚动轴承故障诊断方法 被引量:7
6
作者 王英杰 朱景建 +1 位作者 龚智强 何彦虎 《机械设计》 CSCD 北大核心 2024年第11期123-129,共7页
滚动轴承作为机械设备中的核心组件,其运行状态直接影响系统的安全性与可靠性。由于轴承运转过程中的噪声干扰,传统故障诊断方法存在识别不准确、模型泛化有限等不足。为解决此问题,提出了一种基于DAE-BiLSTM-CNN的滚动轴承故障诊断方... 滚动轴承作为机械设备中的核心组件,其运行状态直接影响系统的安全性与可靠性。由于轴承运转过程中的噪声干扰,传统故障诊断方法存在识别不准确、模型泛化有限等不足。为解决此问题,提出了一种基于DAE-BiLSTM-CNN的滚动轴承故障诊断方法。通过去噪自动编码器(DAE)提高模型去除噪声干扰能力、采用双向长短时记忆网络(BiLSTM)提取轴承运转过程中的时序特征,再采用卷积神经网络(CNN)提取显著特征进行故障判别与分类。采用已公开数据对模型进行训练及超参数优化,并比较了提出的故障诊断模型与现有模型的准确性、精度、召回率及F1分数等性能评价指标。结果表明:相比于现有的故障诊断模型,所提方法具有更高的精度及召回率,验证了该故障诊断模型的准确性及可靠性,同时也说明该诊断方法对于实际工业应用中的滚动轴承故障诊断具备一定的理论参考价值。 展开更多
关键词 滚动轴承 故障诊断 去噪自动编码器 双向长短时记忆网络 卷积神经网络
在线阅读 下载PDF
基于残差密集卷积自编码的高噪声图像去噪方法 被引量:3
7
作者 张杰 卢淼鑫 +3 位作者 李嘉康 徐大勇 黄雯潇 史小平 《计算机科学》 CSCD 北大核心 2024年第S01期555-561,共7页
在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力... 在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力;同时,在编码和解码阶段设计三级密集残差网络结构,实现图像特征的有效挖掘;最后,设计一个优化损失函数以进一步提高重建图像的质量。实验结果表明,设计的去噪方法能够从高噪声图像中重建高质量的图像,同时能够保留更多的细节特征信息,有效验证了该算法在图像去噪中的有效性。该方法能够有效解决高噪声图像的去噪问题,具有重要的应用价值。 展开更多
关键词 图像去噪 卷积自编码器 残差密集卷积 高噪声图像 优化损失函数
在线阅读 下载PDF
融合二次特征提取和自蒸馏的流量异常检测方法 被引量:1
8
作者 陈万志 赵林 王天元 《信息安全研究》 CSCD 北大核心 2024年第12期1082-1090,共9页
针对深度学习模型在处理非平衡的海量高维流量数据时对少数类攻击流量检测率低的问题,提出一种融合二次特征提取和自蒸馏的流量异常检测方法.首先,采用隔离森林(isolation forest,iForest)去除正常类样本中的离群点,训练改进的卷积去噪... 针对深度学习模型在处理非平衡的海量高维流量数据时对少数类攻击流量检测率低的问题,提出一种融合二次特征提取和自蒸馏的流量异常检测方法.首先,采用隔离森林(isolation forest,iForest)去除正常类样本中的离群点,训练改进的卷积去噪编码器(convolutional denoising autoencoder,CDAE),减少数据中噪声和离群点对模型训练时的影响,得到原始特征的低维增强表示.其次,借助ADASYN在去除离群点的数据集上合成少数类攻击样本,解决数据失衡问题.然后,再利用iForest清除生成新样本中的离群点得到新数据集,利用训练好的CDAE对新数据集进行1次特征提取,提取的特征作为基于自蒸馏的ResNet模型输入完成2次特征提取.最后,通过组合训练好的CDAE和ResNet模型实现对异常流量的精准识别.该方法在NSL-KDD数据集上五分类准确率和F1分数最高分别达到91.52%和92.05%.实验结果表明,与现有的方法相比,该方法能够有效提升对少数攻击流量的检测率. 展开更多
关键词 流量异常检测 卷积去噪自编码器 自蒸馏 隔离森林 自适应合成采样
在线阅读 下载PDF
基于降噪自编码器的侧信道攻击预处理方法
9
作者 朱肖城 郑世慧 杨春丽 《密码学报(中英文)》 CSCD 北大核心 2024年第2期416-426,共11页
侧信道分析在硬件安全评估中起着至关重要的作用,而降噪预处理可以去除数据曲线包含的部分噪声,提高攻击成功率.然而,当数据中噪声繁杂且期望预处理前后数据规模不减少时,常规的降噪方式效果较差甚至无效.本文基于卷积神经网络设计了一... 侧信道分析在硬件安全评估中起着至关重要的作用,而降噪预处理可以去除数据曲线包含的部分噪声,提高攻击成功率.然而,当数据中噪声繁杂且期望预处理前后数据规模不减少时,常规的降噪方式效果较差甚至无效.本文基于卷积神经网络设计了一种优化的降噪自编码器.首先,对第一轮加密的字节代换操作具有相同输出的数据曲线做均值滤波处理,并根据字节代换的输出构造对应的自编码器模型标签,最大化地提取出纯净数据.其次,在计算标签与预测值的损失函数中添加L2正则化惩罚项,防止过拟合以及加速训练.本文对公开的DPAContestV2、DPAContestV4.1和ASCAD数据集进行降噪预处理及侧信道攻击.实验结果表明,处理后的数据相比原始数据信噪比分别提高3.53、3.14、3.86倍,皮尔逊相关系数分别提高1.94、1.37、1.04倍.在攻击阶段,不进行降噪预处理时V2、V4.1、ASCAD数据集分别需要1175、4、191条测试轨迹破译密钥.而使用本文方法降噪后成功攻击所需轨迹数量分别降低为440、1、41条.因此,本文的降噪自编码器网络可以大幅度降低信号中包含的噪声,并显著提高了攻击性能. 展开更多
关键词 卷积神经网络 降噪自编码器 降噪预处理 侧信道攻击
在线阅读 下载PDF
基于有损压缩编码的降噪自编码器
10
作者 袁振 刘进锋 《计算机科学》 CSCD 北大核心 2024年第S01期460-466,共7页
图像预处理算法的优劣程度直接关系到图像后置处理的效果,如图像分割、目标检测、边缘提取等。为了获取高质量的数字图像,对图像进行降噪处理成了必不可少的前置步骤。图像降噪旨在尽可能地保持原始信息完整性(即主要特征)的同时,又能... 图像预处理算法的优劣程度直接关系到图像后置处理的效果,如图像分割、目标检测、边缘提取等。为了获取高质量的数字图像,对图像进行降噪处理成了必不可少的前置步骤。图像降噪旨在尽可能地保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。为此,提出了一种基于有损压缩编码的卷积自编码器(AutoEnconders,AE)去噪模型;并根据最大编码率下降原则(the principle of Maximal Coding Rate Reduction,MCR 2)设计了新的损失函数代替主流深度学习算法中常用的均方误差(Mean Squared Error,MSE)损失,以提高模型的鲁棒性和适应性。模型首先通过编码器处理带噪图像,得到隐变量,然后使用解码器进行解码,消除噪声并得到重构图像。接下来,保持编码器不变,将重构图像输入编码器,使编码器继续学习并得到重构隐变量。最后,通过计算隐变量与重构隐变量的距离来间接衡量重构图像与原始图像的误差,并将其作为收敛代价进行模型训练。在thumbnails128×128和CBSD68数据集上对所提模型进行了大量实验验证。实验结果表明,该自编码器框架(AE-MCR 2)在不同类型的噪声(高斯噪声、伯努利噪声和泊松噪声)下均表现出良好的性能,并具有一定的可解释性。 展开更多
关键词 计算机视觉 图像去噪 自编码器 卷积神经网络 压缩编码
在线阅读 下载PDF
煤矿旋转机械健康指标构建及状态评估 被引量:5
11
作者 李曼 潘楠楠 +1 位作者 段雍 曹现刚 《工矿自动化》 北大核心 2022年第9期33-41,共9页
煤矿设备监测参数为时间序列数据,其时序特征对健康评估的影响较大。针对传统机械设备健康评估中存在的信号时空特性提取不完备、人为经验依赖程度高、设备早期状态变化评估难等问题,建立了基于二维数组的长短期记忆降噪卷积自编码器(2D... 煤矿设备监测参数为时间序列数据,其时序特征对健康评估的影响较大。针对传统机械设备健康评估中存在的信号时空特性提取不完备、人为经验依赖程度高、设备早期状态变化评估难等问题,建立了基于二维数组的长短期记忆降噪卷积自编码器(2D-LSTMDCAE)模型,并提出了基于2D-LSTMDCAE的煤矿旋转机械健康指标(HI)构建及状态评估方法。将一维振动数据转换为二维数组,通过二维卷积网络模型充分学习原始数据中所包含的信息,增强模型对数据特征的学习能力;将样本并行输入卷积和长短期记忆(LSTM)单元,以获取完备的信号时空特征;构建无监督学习的降噪卷积自编码器(DCAE)模型并进行样本重构,采用Bray-Curtis距离计算原始样本与重构样本间相似度,得到HI,解决设备运行过程中状态标签难以获取的问题,提升模型在强背景噪声中的适应能力。使用XJTU-SY轴承数据集验证2D-LSTMDCAE模型的特征学习能力,并采用相关性和单调性2个指标评价基于HI的状态评估方法,测试结果表明:二维输入样本构建方法及学习数据时序特征的HI构建方法对轴承的性能退化更敏感,2D-LSTMDCAE模型能够更早地检测到设备的早期故障,在测试轴承上相比于LSTMDCAE和DCAE模型构建的HI及均方根平均提前了约7 min;与LSTMDCAE和DCAE模型构建的HI、均方根相比,2D-LSTMDCAE模型构建的HI的相关性和单调性均较高,能更好地反映轴承的退化情况。采用减速器加速退化实验数据进行健康评估实验,在测试减速器上,相比于均方根指标,通过2D-LSTMDCAE模型构建的HI能够提前8 min发现早期故障,且HI相关性提高了0.007,单调性提高了0.211,能够更好地反映减速器的退化情况。 展开更多
关键词 煤矿旋转机械 状态评估 健康指标 信号时空特征 长短期记忆 降噪卷积自编码器 2D-LSTMdcae
在线阅读 下载PDF
用于高光谱变化检测的多径卷积网络算法 被引量:3
12
作者 赵春晖 张锦林 +1 位作者 宿南 闫奕名 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1398-1404,共7页
针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码... 针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码器将高光谱数据进行降维。为了得到2幅图像间的差异信息,使用光谱角来表征对应像素间的变化关系。为了利用遥感图像中的空间信息,使用光谱角矩阵中切比雪夫距离小于等于3的区域来进行空间信息的提取,构建一个融合了空间信息的多路径卷积神经网络,并通过该网络得到变化检测结果。在3个高光谱变化检测数据集上进行实验,实验结果表明该方法的总体误差低、准确率高和Kappa系数高,证明了该方法的有效性。 展开更多
关键词 变化检测 高光谱遥感图像 堆叠降噪自动编码器 光谱角 空间信息 多路径卷积网络
在线阅读 下载PDF
基于卷积降噪自编码器的地震数据去噪 被引量:31
13
作者 宋辉 高洋 +1 位作者 陈伟 张翔 《石油地球物理勘探》 EI CSCD 北大核心 2020年第6期1210-1219,1160-1161,共12页
噪声压制是地震勘探中一个长期存在的问题,虽然一些传统方法能够压制数据中的噪声,但存在有效信号丢失、噪声残留等问题。为此,提出了一种基于卷积降噪自编码器的无监督地震数据去噪算法。该算法首先对地震数据进行一定程度的随机损坏,... 噪声压制是地震勘探中一个长期存在的问题,虽然一些传统方法能够压制数据中的噪声,但存在有效信号丢失、噪声残留等问题。为此,提出了一种基于卷积降噪自编码器的无监督地震数据去噪算法。该算法首先对地震数据进行一定程度的随机损坏,然后将损坏后的地震数据输送到编、解码框架。编码框架负责捕捉地震数据波形特征,据此消除噪声;解码框架能够对特征图进行扩大并恢复地震数据细节信息,从而得到重构的地震数据。最后,将重构地震数据与原始地震数据之间的误差作为收敛代价进行模型训练。考虑到地震数据的复杂性与特殊性,在编码和解码阶段使用了多尺度卷积模块提取地震数据特征。合成数据与实际数据的验算结果表明,该方法在保护地震信号的同时能够有效压制随机噪声、提高地震信号的信噪比。 展开更多
关键词 无监督学习 卷积神经网络 降噪自编码器 地震数据 去噪
在线阅读 下载PDF
基于卷积降噪自编码器的藏文历史文献版面分析方法 被引量:13
14
作者 张西群 马龙龙 +2 位作者 段立娟 刘泽宇 吴健 《中文信息学报》 CSCD 北大核心 2018年第7期67-73,81,共8页
近年来,随着人们对历史和传统文化的保护和传承越来越重视,研究人员对历史文献数字化的兴趣也越来越高涨。版面分析是历史文献数字化的重要基础步骤,该文提出了一种基于卷积降噪自编码器的藏文历史文献版面分析方法。首先,将藏文历史文... 近年来,随着人们对历史和传统文化的保护和传承越来越重视,研究人员对历史文献数字化的兴趣也越来越高涨。版面分析是历史文献数字化的重要基础步骤,该文提出了一种基于卷积降噪自编码器的藏文历史文献版面分析方法。首先,将藏文历史文献图像进行超像素聚类获得超像素块;然后,利用卷积降噪自编码器提取超像素块的特征;最后,使用SVM分类器对藏文历史文献的超像素块进行分类预测,从而提取出藏文历史文献版面的各个部分。在藏文历史文献数据集上的实验表明,该方法能够对藏文历史文献的不同版面元素进行有效的分离。 展开更多
关键词 藏文历史文献 版面分析 卷积降噪自编码器 超像素
在线阅读 下载PDF
多深度学习模型决策融合的齿轮箱故障诊断分类方法 被引量:13
15
作者 陈科 段伟建 +1 位作者 吴胜利 邢文婷 《科学技术与工程》 北大核心 2022年第12期4804-4811,共8页
针对齿轮故障诊断中单一传感器采集信息不完全、容错性不佳及一种神经网络模型具有局限性,传统信号处理技术提取特征困难等问题,提出了多深度学习模型决策融合的齿轮箱故障诊断分类方法,构建了基于卷积神经网络(convolutional neural ne... 针对齿轮故障诊断中单一传感器采集信息不完全、容错性不佳及一种神经网络模型具有局限性,传统信号处理技术提取特征困难等问题,提出了多深度学习模型决策融合的齿轮箱故障诊断分类方法,构建了基于卷积神经网络(convolutional neural networks,CNN)和改进堆叠降噪自动编码器(stacked denoising autoencoders,SDAE)的混合网络模型,根据改进的Dempster-Shafer(D-S)证据理论实现决策级融合诊断。以时频信号作为CNN的输入,以频域信号作为SDAE的输入,采用Adam优化算法和dropout、批量归一化技术训练该混合模型。实验结果表明:利用该融合方法对齿轮进行故障诊断相比单个的网络模型CNN和SDAE诊断正确率有所提高,为齿轮故障智能诊断分类提供了新路径。 展开更多
关键词 卷积神经网络(CNN) 堆叠降噪自动编码器(SDAE) 改进D-S证据理论 故障诊断
在线阅读 下载PDF
基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法 被引量:42
16
作者 叶壮 余建波 《振动与冲击》 EI CSCD 北大核心 2020年第20期55-66,共12页
为了解决单通道图像信号输入不能全面表达故障特征的问题,提出基于多通道一维卷积神经网络(Multi-Channel One-dimensional Convolutional Neural Network,MC-1DCNN)的故障特征学习方法。利用经验模态分解(Empirical Mode Decomposition... 为了解决单通道图像信号输入不能全面表达故障特征的问题,提出基于多通道一维卷积神经网络(Multi-Channel One-dimensional Convolutional Neural Network,MC-1DCNN)的故障特征学习方法。利用经验模态分解(Empirical Mode Decomposition,EMD)方法对信号进行处理,得到多通道一维信号;构建MC-1DCNN模型,对多通道一维信号进行特征提取。在MC-1DCNN的全连接层后接堆叠降噪自编码器(Stacked Denoised Autoencoder,SDAE)层,进一步进行维度缩减和特征提取并实现特征分类。通过某型号齿轮箱故障诊断实验对所提方法进行验证,实验结果表明,所提方法的特征提取能力和故障诊断效果显著优于典型的深度学习方法和机器学习分类器。 展开更多
关键词 齿轮箱故障诊断 多通道信号 卷积神经网络 堆叠降噪自编码器 特征学习
在线阅读 下载PDF
基于卷积降噪自编码器的雷达信号智能分选 被引量:3
17
作者 洪淑婕 孙闽红 +1 位作者 王之腾 仇兆炀 《探测与控制学报》 CSCD 北大核心 2022年第5期83-89,96,共8页
针对现有雷达信号分选方法在脉冲丢失、脉冲参差及参数估计误差大等复杂电磁环境下分选性能下降这一不足,提出基于卷积降噪自编码器的雷达信号智能分选方法。该方法将其他脉冲序列视为噪声,目标脉冲序列视为待提取的数据。首先将脉冲序... 针对现有雷达信号分选方法在脉冲丢失、脉冲参差及参数估计误差大等复杂电磁环境下分选性能下降这一不足,提出基于卷积降噪自编码器的雷达信号智能分选方法。该方法将其他脉冲序列视为噪声,目标脉冲序列视为待提取的数据。首先将脉冲序列的到达时间进行编码,并将其转化为二进制编码向量,将编码向量输入卷积降噪自编码器学习目标脉冲序列的内部时间模式,再用训练后的网络对混合脉冲序列进行分选,提取出目标脉冲序列。仿真结果表明,在考虑漏脉冲率、参差脉冲率、TOA估计误差、信噪比等参数变化及存在多功能雷达信号的复杂电磁环境下,该方法的分选正确率均明显优于基于TOA参数的传统方法和使用脉内特征的深度学习方法,证明了该方法的有效性和优越性。 展开更多
关键词 信号分选 卷积降噪编码器 脉冲编码 脉冲到达时间
在线阅读 下载PDF
基于电子舌与GAN-CDAE-ELM模型的咖啡产地快速溯源检测 被引量:2
18
作者 高继勇 王首程 +1 位作者 于雪莹 王志强 《电子测量技术》 北大核心 2021年第21期36-43,共8页
为了实现对咖啡产地的快速溯源检测,提出了一种基于电子舌与生成对抗网络(GAN)-卷积降噪自编码器(CDAE)-极限学习机(ELM)组合模型相结合的检测方法。针对电子舌检测原始数据样本数量不足而导致深度学习模型准确率低、泛化能力差等问题,... 为了实现对咖啡产地的快速溯源检测,提出了一种基于电子舌与生成对抗网络(GAN)-卷积降噪自编码器(CDAE)-极限学习机(ELM)组合模型相结合的检测方法。针对电子舌检测原始数据样本数量不足而导致深度学习模型准确率低、泛化能力差等问题,采用生成对抗网络(GAN)扩充训练样本数据规模,提高系统的鲁棒性;针对电子舌输出信号复杂、维度大、噪声多的特点,采用卷积降噪自编码器(CDAE)在低维特征空间对电子舌信号进行特征提取,提高关键特征的表达能力;最后,采用极限学习机(ELM)对提取的特征信息进行分类鉴别,构建咖啡产地溯源检测分析模型。利用该模型对五种不同产区的咖啡进行分类鉴别,结果表明,与基于离散小波变换(DWT)结合支持向量机(SVM)与极限学习机(ELM)等传统机器学习模型以及VGG16网络等深度学习模型相比,GAN-CDAE-ELM对不同产地咖啡分辨效果更优,其测试集的准确率、精确率、召回率、F1-Score分别达到了99.00%、99.03%、99.00%、0.990 1。该研究为基于智能感官系统的咖啡产地快速辨识与检测提供一种新思路。 展开更多
关键词 咖啡 电子舌 生成对抗网络 卷积降噪自编码器 极限学习机
在线阅读 下载PDF
降噪自编码器深度卷积过程神经网络及在时变信号分类中的应用 被引量:18
19
作者 朱喆 许少华 《计算机应用》 CSCD 北大核心 2020年第3期698-703,共6页
针对非线性时变信号分类问题,将过程神经网络(PNN)的信息处理机制与卷积运算相结合,提出了一种降噪自编码器深度卷积过程神经网络(DAE-DCPNN)。该模型由时变信号输入层、卷积过程神经元(CPN)隐层、深度降噪自动编码器(DAE)网络结构和sof... 针对非线性时变信号分类问题,将过程神经网络(PNN)的信息处理机制与卷积运算相结合,提出了一种降噪自编码器深度卷积过程神经网络(DAE-DCPNN)。该模型由时变信号输入层、卷积过程神经元(CPN)隐层、深度降噪自动编码器(DAE)网络结构和softmax分类器构成。CPN的输入为时序信号,卷积核取为具有梯度性质的5阶数组,基于滑动窗口进行卷积运算,实现时序信号的时空聚合和过程特征提取。在CPN隐层之后,栈式叠加DAE深度网络和softmax分类器,实现对时变信号特征高层次的提取和分类。分析了DAE-DCPNN的性质,给出了按各信息单元分别进行赋初值训练、模型参数整体调优的综合训练算法。以基于12导联心电图(ECG)信号对7种心血管疾病分类诊断为例,实验结果验证了所提模型和算法的有效性。 展开更多
关键词 时变信号分类 卷积过程神经元 降噪自编码器 卷积过程神经网络 特征提取 心电图信号分类
在线阅读 下载PDF
多尺度细节增强的红外图像去混合噪声研究 被引量:3
20
作者 赵斌 王春平 付强 《火力与指挥控制》 CSCD 北大核心 2021年第3期43-49,54,共8页
针对红外图像中噪声强度高、类型多的问题,提出一种基于卷积自编码器实现的图像降噪模型——IS-DCAE。通过分析红外图像噪声干扰原因,建立了3种噪声模型产生噪声图像;在基本卷积自编码器的基础上,增加了简化的Inception模块,用以拓展网... 针对红外图像中噪声强度高、类型多的问题,提出一种基于卷积自编码器实现的图像降噪模型——IS-DCAE。通过分析红外图像噪声干扰原因,建立了3种噪声模型产生噪声图像;在基本卷积自编码器的基础上,增加了简化的Inception模块,用以拓展网络的深度、增强模型的非线性映射能力和特征表达能力;同时,为了更好地恢复图像的细节信息,在编码器和解码器的不同尺度特征图之间建立了跳跃连接,用于融合不同语境间的特征信息,增强了重构图像的边缘纹理等细节表现力。实验结果表明,所提方法无论在降噪效果还是处理时间上,都明显优于传统的BM3D算法,并具备同时剔除多类型高强度噪声干扰的能力。该方法鲁棒性好,细节还原能力强,是一种高效降低红外图像常见混合噪声的方法。 展开更多
关键词 红外图像降噪 卷积自编码器 噪声建模 INCEPTION 模块 跳跃连接
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部