为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源...为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源出力历史数据建立椭球不确定集合,通过连接高维椭球顶点,建立了数据驱动的凸包多面体集合,接着通过放缩凸包集合更好地对不确定参数进行包络。进一步建立了基于数据驱动的多能互补微网鲁棒优化模型,并采用列与约束生成算法(Column and constraint generation,C&CG)对该模型进行求解。最后通过算例进行仿真对比,结果表明,基于数据驱动的多能互补微网鲁棒优化方法可以减少保守性,提高优化结果鲁棒性,证明了所提方法的有效性。展开更多
多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提...多服务移动边缘计算(multiple-services mobile edge computing,MSs-MEC)能根据需求自适应调整服务缓存决策,使得部署在用户侧的边缘服务器能够灵活处理不同服务类型的任务。但在实际应用中,特定类型任务的成功迁移依赖于服务环境的提前安装。此外,同时进行任务迁移和服务缓存可能会因时间冲突而导致计算延时。因此,针对上述相关问题,首先将任务迁移和服务缓存决策进行解耦,针对深度强化学习(deep reinforcement learning,DRL)在具有高维的混合决策空间的性能提升不明显的缺点(例如资源分配时利用率不高),将DRL与Transformer结合,通过在历史数据中学习,输出当前时隙的任务迁移决策和下一时隙的任务决策,保证任务到达边缘服务器时能立即执行。其次,为了提高资源分配问题中的资源利用率,将问题分解为连续资源分配问题和离散的任务迁移与服务缓存问题,利用凸优化技术求解资源分配最优决策。广泛的数值结果表明,与其他基线算法相比,提出的算法能有效地减少任务的平均完成时延,同时在资源利用率和稳定性方面也有优异的表现。展开更多
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
文摘为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源出力历史数据建立椭球不确定集合,通过连接高维椭球顶点,建立了数据驱动的凸包多面体集合,接着通过放缩凸包集合更好地对不确定参数进行包络。进一步建立了基于数据驱动的多能互补微网鲁棒优化模型,并采用列与约束生成算法(Column and constraint generation,C&CG)对该模型进行求解。最后通过算例进行仿真对比,结果表明,基于数据驱动的多能互补微网鲁棒优化方法可以减少保守性,提高优化结果鲁棒性,证明了所提方法的有效性。